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1 Experiments

We present an analytical description for the experiments conducted in [1].

7-link Reaching Task. We test our approach on a simulated 7-link planar robot. The robot’s
task is to reach with it’s end-effector pre-specified positions on the x − y plane at pre-specified
time points. The robot is controlled by setting the desired acceleration q̈i∈{1...7} at each joint and
operates in a noisy environment. The environment’s noise is additive zero-mean Gaussian control
noise with Σu = 200I . We used two sets of demonstrations, where each set had different via-
points and contained M = 20 demonstrations. An optimal control planner was used to generate
these demonstrations [2]. The optimal control planner used a time-varying quadratic cost function
to penalize deviations of the robot’s end-effector at the specified via-points. In the first set, we
specified via-points at time points t1via = {0.25, 1}s, whereas in the second set we set the via-
points at time points t2via = {0.75, 1}s. For training the two ProMPs from these sets, we used
N = 60 Gaussian basis functions per primitive and dimension. The dimensionality of the weight
vector was therefore w ∈ R420 and of the covariance matrix Σw ∈ R420×420. A smaller number
of basis functions N would slightly decrease the performance. In the first two rows of Figure 1 we
illustrate each of the primitives at different time points, and, in the last row, the combination of the
two primitives by multiplying the primitives. The via-point positions are denoted in the figures by
the blue, green, and red circles. We observe that ProMPs learned to reproduce exactly the desired
distribution in joint space, and, as a result, the robot’s end-effector passed over the via-points in task
space with a high accuracy. However, during the execution of the remaining movement, the robot
exhibited a large degree of variability, matching the demonstrated distribution.

Additionally, we compare on a similar via-point task our approach against the DMPs, and an exten-
sion of DMPs as presented in [3]. For the later, we modified our controller such as the proportional
part of the gain matrix Kt to be equal to inverse of the position covariance Σt, i.e. KP

t = Σ−1t ,

and set the differential gain part KD
t = 2

√
KP

t for achieving critical dumping. While the ProMP
could achieve an average cost value of a similar quality as the optimal controller, neither the DMP
or the extension of DMP could achieve similar performance, as illustrated in Figure 2.

Robot Hockey. In the hockey task, the robot has to shoot a hockey puck to different directions
and distances. We used a lightweight KUKA robotic arm with seven DoF, that we control over the
Fast-Research Interface (FRI). A hockey stick is mounted as an end-effector. The normal to the stick
at the initial position of the robot is used to define the reference frame. The control parameters of the
robot at every time point tk∈1...K are the desired position vector qt ∈ R7and the desired acceleration
q̈t ∈ R7 of each joint. The ProMPs provide at every time point the desired acceleration q̈t, while
the desired position qt is obtained from the second-order Euler integration of the acceleration. The
duration of the control step is dt = 0.001s. In order to demonstrate the properties of the ProMPs,
we used two sets of demonstrations, and we applied different operations between them. The first
set contained M1 = 10 demonstrations where the robot shot the puck straight at different distances.
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Figure 1: A 7-link planar robot has to
reach a target position at T = 1.0s
with its end-effector while passing a
via-point at t1 = 0.25s (top) or t2 =
0.75s (middle). The plot shows the
mean posture of the robot at different
time steps in black and samples gen-
erated by the ProMP in gray. The
ProMP approach was able to exactly re-
produce the demonstration which have
been generated by an optimal control
law. The combination of both learned
ProMPs is shown in the bottom. The
resulting movement reached both via-
points with high accuracy.

The demonstrations were provided by a human tutor, using kinesthetic teach-in. The second set also
contained M2 = 10 demonstrations where the demonstrator shot the puck at different angles, while
trying to keep the variance of the distance relatively small. For each of the training sets, we trained
two ProMPs using N = 10 Gaussian basis functions per dimensions, which resulted to a weight
vector w ∈ R70. By reproducing the learned primitives, we obtain behaviors illustrated in Figure
3(b) and (c) respectively. We generated the images in Figure 3 by photographing the robot’s config-
uration at the end of the execution of the primitive and when the puck was stopped. The figures show
an overlay of the images by multiple executions of each primitive. A new primitive was trained by
concatenating the demonstrations of the previous datasets, using the same number of features. The
reproduction is depicted in Figure 3(d). We observe that the robot shots with variability on both
the angular and distance domain, demonstrating characteristics of both datasets. To demonstrate the
probabilistic properties of ProMPs, we generated a new primitive by multiplying the two learned
models from the distance and angle demonstrations. The new primitive was generated only by using
the trained models from the previous examples, in closed form. Thus, no additional demonstrations
or re-estimation of the parameters was needed. The resulting primitive shots the pucks at the inter-
section of the two models, i.e. straight and at medium distances, as we can see at Figure 3(e). In
the last experiment, we selected demonstrations from the angle dataset that either send the puck to
the left or to the right and we labeled them accordingly. Then we trained the the parameters of a
ProMP by using both left and right demonstrations. In the last step, we trained the joint distribution
of the ProMP parameters w and the angle α of the puck at the final position. By conditioning the
resulted distribution on the final angle α of the puck, i.e. by computing p(w|α) we obtain a model
that shoots in the desired direction, as we can see from Figure 3(f).

Robot Maracas. For the rhythmic movement experiment, we used the maracas task. The maracas
is a musical instrument containing grains, such that shaking it produces sounds. We used the 7-DoF
lightweight KUKA arm with a 15-DoF hand provided by DLR as an end-effector. The hand was
used only for holding the maracas and it was not controlled by the ProMPs. Initially, we demonstrate
a slow version of the rhythmic shaking movement required to play the maracas. Demonstrating fast
movements is difficult due to the inertia of the arm and may also damage the gearboxes of the mo-
tors. Hence, a single slow demonstration was provided by the tutor that was about ten periods long.
We learned the rhythmic movement using N = 10 Von-Misses basis functions per dimension. The
ProMP was trained on the R7 space, including all the DoF of the robot. For facilitating the estima-
tion of the parameters, we split the demonstration inM = 400 parts and we assigned the appropriate
phase signal. We optimized the parameters of ProMPs using the Expectation Maximization algo-
rithm. After learning the ProMP model for the demonstration, we progressively increase the speed
of the movement by modulating the phase, such that the robot successfully plays the instrument. In
Figure 4 we illustrate the trajectory distribution of the rhythmic movement while we where modu-
lating the speed of the phase signal at execution time. Different sound patterns where achieved by
changing the speed of the movement. Additionally, we demonstrated a second type of movement,
which was mainly shaking the maracas sideways. We learned the movement in a similar fashion
to the previous one. By defining a smooth blending function, we continuously blend between both
movements and produce different sounds patterns. One such transition between the two ProMPs is
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Figure 2: Comparison of ProMPs (blue), DMPs (red), and the modified extension of DMPs (green),
on the cost function of a via-point task using the 7-link robot. The cost is averaged over K = 200
reproductions for every approach. (a) In the first comparison we illustrate the performance of every
approach trained with a different number of demonstrations. The DMPs have almost independent
performance to the number of demonstrations, since they learn the mean of the demonstrations and
they follow the trajectory with constant gains. The extension of DPMs performs better, but it fails
to pass though the via-points with high accuracy, and most importantly at the required time step.
ProMPs outperform both control approaches. (b) Additionally, we compare the approaches using a
different number of basis functions. ProMPs increase their performance slightly, DMPs have already
a sufficient amount of basis and they remain at a constant performance level. On the other hand, the
ext. DMPs suffer from numerical issues and as a result have a performance impact.

Figure 3: Robot Hockey. The robot shoots a hockey puck. We demonstrate ten straight shots for
varying distances and ten shots for varying angles. The pictures show samples from the ProMP
model for straight shots (b) and angled shots (c). Learning from combined data set yields a model
that represents variance in both, distance and angle (d). Multiplying the individual models leads to a
model that only reproduces shots where both models had probability mass, in the center at medium
distance (e). The last picture shows the effect of conditioning on only left and right angles (f).
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Figure 4: (a)The maracas task. We demonstrate a slow version of the rhythmic shaking movement
required to play the maracas. After learning the ProMP model for the demonstration, we progres-
sively increase the speed of the movement by modulating the phase, such that the robot successfully
plays the instrument. (b) Trajectory distribution for playing maracas (joint number 4). By modu-
lating the speed of the phase signal zt, the speed of the movement can be adapted. The plot shows
the desired distribution in blue and the generated distribution from the feedback controller in green.
Both distributions match. (c) Blending between two rhythmic movements (blue and red shaded ar-
eas) for playing maracas. The green shaded is produced by continuously switching from the blue to
the red movement.

shown for the third joint in Figure 4(c), where in blue and red we show the ProMPs that were learned
from the different datasets, and in green the result of the blending.
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