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Regret based Solutions for Uncertain MDPs
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Proposition 1. For a policy ~π0 : 0 ≤ reg(~π0)−creg(~π0) ≤
[

maxsR
∗(s)−minsR

∗(s)
]
· (1−γ

H)
1−γ

Proof. We can rewrite Equation (1) as follows:

creg(~π0) = v0,#(~π0)− v0(~π0), where v0,#(~π0) =
∑
s

α(s)v0,#(s, ~π0) and

vt,#(s, ~πt) =
∑
a

πt(s, a) ·
[
R∗(s) + γ

∑
s′

T (s, a, s′) · vt+1,#(s′, ~πt+1)
]

Since the value for any policy cannot exceed the value of optimal policy, we have:
reg(~π0) − creg(~π0) = v0(~π∗) − v0,#(~π0) ≥ 0. The difference in value of optimal policy (a
deterministic one) and any other policy is because of the states visited by using the policy. In the
worst case for creg, the optimal policy visits the state with highest R∗ and ~π0 visits the states with
the lowest R∗ at every time step. Sum of a geometric progression over the time steps yields

reg(~π0)− creg(~π0) ≤
[

max
s
R∗(s)−min

s
R∗(s)

]
· (1− γH)

1− γ

(a)

Figure 1: Error

The proposition below provides the proof for footnote 2.
Footnote 3. In the approximation of x2 function using piecewise linear components, λ(w), the
maximum approximation in any interval [brw−1, brw] occurs at the mid-point.

Proof. Without loss of generality, let us consider any point y in the interval [brw−1, brw]. From
Equation 7, we have

y = λw−1brw−1 + λwbrw
Since, we have the sum constraint in Equation 9, the above equation can be modified as:

y = (1− λw)brw−1 + λwbrw

=⇒ λw =
y − brw−1
brw − brw−1

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

The error is given by the difference between LHS and RHS in Equation 8:

δ = y2 −
[
λw−1(brw−1)2 + λw(brw)2]

Substituting value of λw:

δ = y2 −
[
(brw)2 · y − brw−1

brw − brw−1
− (brw−1)2 · y − brw

brw − brw−1

]
When δ is maximum, we have dδ

dy = 0. Therefore:

2y − ((brw)2 − (brw−1)2)

(brw − brw−1)
= 0

y =
brw + brw−1

2
Hence proved. �
Proposition 3. Let v̂tξq (s, ~πt) denote the approximation of vtξq (s, ~πt). Then

vtξq (s, ~πt)− |A| · ε · (1− γ
H−1)

4 · (1− γ)
≤ v̂tξq (s, ~πt) ≤ vtξq (s, ~πt) +

|A| · ε · (1− γH−1)

4 · (1− γ)

Proof: At time step t + 1, the approximation error in vt+1
ξq

(s, ~πt+1) is given by |A| · δ, (|A| as
maximum number of actions across all states, all time steps). The maximum approximation error at
time step t in vtξq (s, a, ~πt) is γ · |A| · δ (due to error in value function at time step t + 1). We can
combine equation 3 and 4 as:

vtξq (s, ~πt) =
∑
a

πt(s, a) ·
[
vtξq (s, a, ~πt)± γ · |A| · δ

]
=
∑
a

πt(s, a) · vtξq (s, a, ~πt)± γ · |A| · δ

Now at time step t the error will be |A| · δ plus future error from time step t+ 1 given by γ · |A| · δ.
Extending to t = 0 we will have sum of two geometric progressions, i.e.

±
[
|A| · δ + γ · |A| · δ + γ2 · |A| · δ...

]
Substituting δ = ε

4 , we will have a positive and negative error of |A|·ε·(1−γ
H−1)

4·(1−γ) . �

Proposition 4. At time step t− 1, the CER corresponding to any policy, πt−1 will have least regret
if it includes CER minimizing policy from t. Formally, if ~π∗,t represents the CER minimizing policy
from t and ~πt represents any arbitrary policy, then:

∀s : max
~ξt−1
p ∈~ξt−1

cregt−1~ξt−1
p

(
s,
〈
πt−1, ~π∗,t

〉 )
≤ max

~ξt−1
p ∈~ξt−1

cregt−1~ξt−1
p

(
s,
〈
πt−1, ~πt

〉 )
if, ∀s : max

~ξtq∈~ξt
cregt~ξtq

(s, ~π∗,t) ≤ max
~ξtq∈~ξt

cregt~ξtq
(s, ~πt)

Proof. From Equation 12, we have:

cregt−1
~ξt−1
p

(
s,
〈
πt−1, ~π∗,t

〉 )
=
∑
a∈A

πt−1(s, a)
[
∆Rt−1

p (s, a) + γ
∑
s′

T t−1
p (s, a, s′) · max

~ξtq∈~ξt
cregt~ξtq

(s′, ~π∗,t)
]

From Equation 14, we have:

cregt−1
~ξt−1
p

(
s,
〈
πt−1, ~π∗,t

〉 )
≤
∑
a∈A

πt−1(s, a)
[
∆Rt−1

p (s, a) + γ
∑
s′

T t−1
p (s, a, s′) · max

~ξtq∈~ξt
cregt~ξtq

(s′, ~πt)
]

≤ cregt−1
~ξt−1
p

(
s,
〈
πt−1, ~πt

〉 )
Thus, max

ξq∈ξ
cregt−1

ξq

(
s,
〈
πt−1, ~π∗,t

〉 )
≤ max

ξq∈ξ
cregt−1

ξq

(
s,
〈
πt−1, ~πt

〉 )
. �
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Pruning dominated actions

Algorithm 1 provides the pseudo-code for pruning step discussed earlier. At each time step, for each
state we maintain an upper and lower bound for the value function. Apart from pruning, this gives us
tight bounds on value function that decrease the number of break points required for linearization.

Algorithm 1: PRUNEDOMINATEDACTIONS()
t← H − 1
for all ξq ∈ ξ, s ∈ S do
vH,minξq

(s)← 0

vH,maxξq
(s)← 0

while t >= 0 do
for all s ∈ S do

for all ξq ∈ ξ, a ∈ A do
vt,minξq

(s, a)← Rtq(s, a) + γ
∑
s′ T tq (s, a, s′) · vt+1,min

ξq
(s′)

vt,maxξq
(s, a)← Rtq(s, a) + γ

∑
s′ T tq (s, a, s′) · vt+1,max

ξq
(s′)

if ∃a′ s.t. vt,minξq
(s, a′) ≥ vt,maxξq

(s, a) ∀ξq then
PRUNE a

vt+1,min
ξq

(s) = minav
t,min
ξq

(s, a)

vt+1,max
ξq

(s) = maxav
t,max
ξq

(s, a)
t← t− 1

SAA Analysis

Each sample (scenario) is described by i = {i1, i2, i3, ..., i|T |} and belong to the set I (in the case
where we consider independent transition probabilities/rewards in each stage, I is the set of samples
which are cross products of independent samples in each stage). Followed from the sample average
approximation (SAA) method described by [2], the steps to calculate the approximate optimality
gap are as follows:

1. Generate the set of sample sets, M =
{
I1, I2, ..., I|M |

}
, where each sample set is of size

|I|. Also generate a larger sample set of size |I ′| � |I|.

• For m = 1, ..., |M |, solve the problem with sample set Im to obtain the solution value
¯reg∗m and policy π̄m

2. Compute the average of the objective values obtained which is a statistical lower bound of
the problem and their corresponding variance as follows:

ˆreg∗ =
1

|M |
∑
m∈M

¯reg∗m and σ2
ˆreg∗ =

1

|M |(|M | − 1)

∑
m∈M

( ¯reg∗m − ˆreg∗)
2
.

3. Let π̄ be the selected solution from the set of solutions obtained in Step 1. Denote by
reg∗I′(π̄) the regret value of the policy π̄ on the large sample set I ′. This value is the
sample average estimate of the true objective function of the policy π̄. Also, its variance
can be computed as follows:

σ2
I′(π̄) =

1

|I ′|(|I ′| − 1)

∑
i∈I′

( ¯reg∗i (π̄)− reg∗I′(π̄))
2

where ¯reg∗i (π̄) is the regret of the policy π̄ corresponding to each sample i ∈ I ′.
4. The absolute optimality gap of the solution π̄ and its variance can be estimated as follows:

gap(π̄) = |reg∗I′(π̄)− ˆreg∗| and σ2
gap(π̄) = σ2

I′(π̄) + σ2
ˆreg∗ .

We can similarly perform SAA analysis for MILP-CER.
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Single Product Stochastic Inventory Control Problem

In the single product finite horizon stochastic inventory control problem [1], at the beginning of
each time period and before observing the demand, the manager determines the current inventory
size xt and decides whether or not to order additional stock yt from a supplier. We assume the cost
of ordering u units is given by k1 ·u, the cost of maintaining an inventory of u units is given by k2 ·u
and the revenue obtained when the demand is j units is given by k3 · j.
Denote Dt =

{
dt0, d

t
1, ..., d

t
q

}
as the set of demand values at time step t (independent of demand

in other time steps). The inventory at time step t + 1 for demand dtq is given by xt+1(dtq) =

max
{
xt + yt − dtq, 0

}
≡ [xt + yt − dtq]

+. Note the that reward at time step t depends on the
current and subsequent inventory size and is given by rt(xt, yt, xt+1(dtq)) = −k1 · yt − k2 · (xt +

yt) + k3 · ([xt + yt − xt+1(dtq)]
+).

The discrete demand uncertainty values translate to uncertainty over reward and transition functions,
which require robust solution concepts. A standard approach is to maximize the minimum expected
values or maximin solution. In this paper, we compare DP-CER against maximin across different
cost-to-revenue ratio defined as k1+k2

k3
.
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