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A Definitions

Given a metric space (M, d) and a set of objects X ⊂ M, an object x ∈ X is an outlier if∣∣ {x′ ∈ X | d(x,x′) > δ }
∣∣ ≥ αn,

where n = |X |, the number of objects, and α and δ are parameters with α, δ ∈ R and 0 ≤ α ≤ 1.
We denote the set of outliers by X (α; δ), which coincides with Knorr and Ng’s DB(α, δ)-outliers.
Notice that α is usually large and close to 1 since outliers should be significantly different from
almost all objects by definition. We also define

X (α; δ) := X \ X (α; δ)

and call an element in X (α; δ) an inlier.

A δ-partition Pδ of a set X is defined as a set of non-empty disjoint subsets of X such that each
element (cluster) C ∈ Pδ satisfies

max
x,x′∈C

d(x,x′) < δ

and ∪
C∈Pδ

C = X .

We consider a δ-partition of all inliers X (α; δ) in Theorem 1 and 2, and that of the set I(α; δ) ⊆
X (α; δ) such that

min
x′∈I(α;δ)

d(x,x′) > δ

for all x ∈ X (α; δ) in Theorem 3 and Corollary 1.

Our sampling-based method is defined as

qSp(x) := min
x′∈S(X )

d(x,x′)

using a randomly and independently sampled set S(X ) ⊂ X . Thus our method requires as input
only the sample size s in practice, whereas the parameters δ and α are used only in our theoretical
analysis.

Notation used in the paper is summarized in Table S1.

B Proof of Theorem 2

Theorem 2 Let Pδ = {C1, . . . , Cl} with l clusters and pi = |Ci| / n for each i ∈ {1, . . . , l}. For
every outlier x ∈ X (α; δ) and the sample size s ≥ l, we have

Pr
(
∀x′ ∈ X (α; δ), qSp(x) > qSp(x

′)
)
≥ αs

∑
∀i;si⪈0

f(s1, . . . , sl; s, p1, . . . , pl),
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Table S1: Notation used in the paper.

R The set of real numbers
d distance function
(M, d) Metric space
X Set of objects; X ⊂ M
x,x′,y,y′ Object, which is element of X (m-dimensional vector if M is multivariate)
n Number of objects, that is, n = |X |
m Number of dimensions
S(X ) Sample set of X ; S(X ) ⊂ X
s Number of samples, that is, s = |S(X )|
X (α; δ) The set of DB(α, δ)-outliers of X , that is,

X (α; δ) = {x ∈ X | |{x′ ∈ X | d(x,x′) > δ}| ≥ αn }
X (α; δ) The complement of DB(α, δ)-outliers, that is,

X (α; δ) = X \ X (α; δ)
Pδ δ-partition
C Cluster (set of objects); C ∈ Pδ and maxx,x′∈C d(x,x

′) < δ
l Number of clusters, that is, l = |Pδ|
pi Fraction of Ci, that is, pi = |Ci| / |

∪
C∈Pδ

C|
si Possible outcome of number of samples in Ci, that is, |Ci ∩ S(X )|
I(α; δ) Subset of X (α; δ) satisfying minx′∈I(α;δ) d(x,x

′) > δ for all x ∈ X (α; δ)
γ Fraction of I(α; δ), that is, γ = |I(α; δ)| / n
f The probability mass function of multinomial distribution
φ Function defined as φ(s) :=

∑
∀i;si⪈0 f(s1, . . . , sl; s, p1, . . . , pl)

B(γ; δ) Lower bound for qSp defined as B(γ; δ) := γs maxPδ
φ(s)

where f is the probability mass function of the multinomial distribution defined as

f(s1, . . . , sl; s, p1, . . . , pl) :=
s!∏l

i=1 si!

l∏
i=1

psii with
l∑

i=1

si = s.

Proof. We have Pr(qSp(x) > δ) = αs from the definition of outliers. Moreover, if Ci ∩ S(X ) ̸= ∅,
that is, |Ci ∩ S(X )| ⪈ 0 for all i ∈ {1, . . . , l}, we have qSp(x

′) < δ for all x′ ∈ X (α; δ). Such
probability can be described using the probability mass function f of the multinomial distribution:

Pr
(
∀x′ ∈ X (α; δ), qSp(x

′) < δ
)
=

∑
∀i;si⪈0

f(s1, . . . , sl; s, p1, . . . , pl),

where each si ∈ N corresponds to the outcome of the cardinality |Ci ∩ S(X )| and the sum is taken
over the following set{

(s1, . . . , sl)

∣∣∣∣∣
l∑

i=1

si = s and si ⪈ 0 for all i ∈ {1, . . . , l}

}
.

Thus the inequality follows.

C Proof of Theorem 3

Theorem 3 Let Pδ = {C1, . . . , Cl} be a δ-partition of I(α; δ) and γ = |I(α; δ)| / n, and assume
that pi = |Ci| / |I(α; δ)| for each i ∈ {1, . . . , l}. For every s ≥ l,

Pr
(
∀x ∈ X (α; δ), ∀x′ ∈ X (α; δ), qSp(x) > qSp(x

′)
)
≥ γs

∑
∀i;si⪈0

f(s1, . . . , sl; s, p1, . . . , pl).

Proof. If S(X ) ⊆ I(α; δ), then qSp(x) > δ holds for all x ∈ X (α; δ), hence
Pr

(
∀x ∈ X (α; δ), qSp(x) > δ

)
= γs.

In the same way as the above proof, if Ci ∩ S(X ) ̸= ∅ for all i ∈ {1, . . . , l}, we have qSp(x
′) < δ

for all x′ ∈ X (α; δ). The inequality therefore follows.
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D Theoretical support for small sample sizes

Remark The lower bound αs(1− βs) given in Theorem 1 with 0 < β < α < 1 is maximized at

s = logβ
logα

logα+ log β
.

Proof. Let g(s) = αs(1− βs). The differentiation of g is obtained as follows.

dg

ds
= αs logα−

(
(αs logα)βs + αs(βs log β)

)
= αs

(
logα− βs(logα+ log β)

)
.

Let us consider the behavior of the function

h(s) = logα− βs(logα+ log β)

when s increases from 0. Note that logα < 0 and log β < 0 always hold since 0 < β < α < 1. It
starts from a positive value since

h(0) = − log β > 0

and becomes negative as we have

logα < βs(logα+ log β),

h(s) = logα− βs(logα+ log β) < 0

if s is large enough. Moreover, this always holds when s increases further since βs(logα + log β)
monotonically increases and

lim
s→∞

h(s) = logα < 0.

Thus g takes the maximum value when h(s) = 0. It follows that

βs(logα+ log β) = logα,

s = logβ
logα

logα+ log β
.

Note that the sample size always takes a natural number, thereby technically we should check both
the floor and ceiling and take the value which maximizes the bound g(s) = αs(1− βs).

For intuitive understanding, we plot the sample size in Figure S1a which maximizes the lower bound
g(s) and the maximized lower bound in Figure S1b for α = 0.95, 0.99, or 0.999 with varying β from
0 to 0.9. Such a large α, which is close to 1, is a typical setting in outlier detection, as outliers should
be significantly different from most of other objects by definition. As we can see, the probability of
success is high and close to 1 for a wider range of β if α is more and more close to 1. Moreover, The
sample size is quite small and less than 50 in the presented cases, which is an attractive property of
qSp to achieve efficient outlier detection in massive data.

E Comparison with qkthSp

Remark For Wu and Jermaine’s iterative sampling method qkthSp, define

Z(x,x′) := Pr(qkthSp(x) > qkthSp(x
′))

for an outlier x ∈ X (α; δ) and an inlier x ∈ X (α; δ). We have

Pr
(
∀x ∈ X (α; δ), ∀x′ ∈ X (α; δ), qkthSp(x) > qkthSp(x

′)
)
≤ min

x∈X (α;δ)

∏
x′∈X (α;δ)

Z(x,x′).

Proof. Since each sampling is independent, if we focus on an outlier x ∈ X (α; δ), we have

Pr
(
∀x′ ∈ X (α; δ), qkthSp(x) > qkthSp(x

′)
)
=

∏
x′∈X (α;δ)

Z(x,x′).

As this holds for any outlier, the upper bound in the remark follows by considering all outliers.
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Figure S1: The sample size (a) and the maximized lower bound (b) for α = 0.95, 0.99, or 0.999
with varying β from 0 to 0.9.

F Comparison with qkthNN

Remark Let O ⊂ X be the set of true outliers given by an oracle and

Λ = { k ∈ N | qkthNN(x) > qkthNN(x
′) for all x ∈ O and x′ ∈ X \ O } ,

which is the set of ks with which we can detect all outliers, and assume that Λ ̸= ∅. Then we have

Pr
(
∀x ∈ O, ∀x′ ∈ X \ O, qSp(x) > qSp(x

′)
)
≥ max

k∈Λ, δ∈∆(k)
B(γ; δ)

if we set α = (n− k)/n and ∆(k) = {δ ∈ R | X (α; δ) = O}.

Proof. Since X (α; δ) = O for all k ∈ Λ and δ ∈ ∆(k), we have

Pr
(
∀x ∈ O, ∀x′ ∈ X \ O, qSp(x) > qSp(x

′)
)
≥ B(γ; δ)

from Corollary 1. This inequality holds for all possible k ∈ Λ and δ ∈ ∆(k) simultaneously, and
hence the remark follows.
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