A Additional proofs

In this section we first prove some technical lemmas befatiagyfull proofs of various claims made
in the paper.

A.1 Volumeestimates for small balls on manifolds

Theorem 12 If
<
"= 124

for0 <e < 1then
vgr? (1 — €) < vol(S) < vgr? (1+4¢).
Proof. The lower bound follows frorm Niyvogi et al. (2008) (Lemma 5w)o show that

Lemmal3 Forr < §

T2 d/2
vol(S) > (1 - > vgre.

472
The upper bound follows from Chazal (2013) who shows that

Lemmal4 Forr < 3

d
T d
<
vol(S) < vg <7'2a> «
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To produce the result of the theorem we will need some camefulipulation of these two lemmas.
In particular, we need the following estimates

where

Lemma 15
f@) == 212 -2’

if0<az<3.

flz)=104+2)" <1+ 2nx
if0<az<5-.

f@)=1—-z)" ' <142z
ifo<az<1/2

flz)=1-2)">1-2nx
if0<az<-.

The proof of this lemma is straightforward based on appratioms via Taylor's series and we omit

them.
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if » < 7. Now, using this also notice that

Using Lemm#Ib we have




where the second inequality follows from Lemma 15 i /8.
Combining these we have the following:

forallr < g

d r2 /2 d 6r d
vqr (1 - 47_2> < vol(S) < war <1 + T)

The final result now follows another application of Lemimé& B5each side of this inequalitiz

A.2 Bound on covering number

We need the following bound on the covering number of a méhif&ee the paper Niyogi etlal.
(2008) (p. 16) for a proof.

Lemma 16 For s < 27, thes-covering number of/ is at most
volg(M) <0 volg(M)c?
cos?(arcsin(s/47))vg(s/2)* —

for an absolute constant In particular, if vol; (M) is bounded above by a constant, theovering
number of)M is at mostO(c?/(vys?)).

Proof. We prove only the second claim. Fer< 27, we havearcsin(s/47) < 7/6, and hence
cos(arcsin(s/47)) > +/3/2. Plugging this in the bound, we get
d
V| < volg(M)(2/v/3) 7
va(s/2)

which gives the claim witl: = 4/+/3. O

A.3 Uniform convergence

In this subsection, we prove uniform convergence for badistered on sample and net points
(Lemma[®). Consider the family of balls centered at a fixedpai B, := {B(z,s) s> 0}.
This collection has VC dimensioh Thus with probabilityl — §’, it holds that for evenB € B.,

we have
_ {P(B)—PTL(B) P(B)—Pn<B)} ~5 \/log(2n>+log<4/6’)

where P(B) is the true mass oB, andP,,(B) = |X N B|/n is its empirical measure. By a union
bound over alk € N, settingd’ := §/(2|NV]), the following holds uniformly for every € A and
everyB € B, with probability1 — §/2:

maX{P(B) — Pu(B) P(B) — Pn(B)} < 2\/10g(2n) + log(8|\V]/9)

VPB) = J/Pu(B) n

To provide a similar uniform convergence result for ballsteeed at a sample poid;, we consider
the (n — 1)-subsampleX”~! of X obtained by deleting\; from the sample. LeP ' be the
empirical probability measure of this subsample:

1
Poo1(B) = — ZH[Xi € BJ.
J#i
It is easy to check thal, _; is uniformly close taP,. In particular, for every seB containingX;,
we have

)

Pur(B) < Pa(B) < P a(B) + @)
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Now, with probability at least — 6/(2n), for any ballB centered af(;,

P(B)— Po_1(B) < 2\/log(2n —n2)_4ilog8n/6 VP,
Py \(B)— P(B) < 2\/log(2n fn2)_+1 log 8n/d 71 (B).

Using [2), we get
P(B) — P,(B) < 2\/log(2n —2) +110g 8n/3
n J—

P,(B) — p(B)<2\/10g(2n—2)+log8n/5 \/7+7

n—1
By a union bound over alX; € X, we get the claimed inequalities for all sample points with
probabilityl — §/2.

P(B),

Putting together our bounds for balls around sample andaietsy with probability at least — 4,
it holds that for allB € B, »r, we have

P(B) - Po(B) < O/ B - /)

P.(B) - P(B) < o(\/m) \/7+ 1

for u = 1 +logn + log [N| = O(d) + logn + dlog(1/s) (using LemmﬂG). The lemma now
follows using simple manipulations of these inequalitisse( Chaudhuri and Dasgupta (2010) for
details).

A.4 Sketch of thelower bound instance

The following lemma gives an estimate of the volume of thensgction of a small ball with a
sphere.

Lemma 17 (Volume of a spherical cap) Supposes? is a d-dimensional sphere of radius (em-
bedded inR4+1), and letz € S?. Then, for small enough, it holds that

2 4
dy _od (1. " r
volg(B(z,r) NS) = vgr (1 Cd 3 + Od(7_4))

wherec, = dggji Note thate; < 0, c; = 0, andey > 0 for all d > 3.

In this section, we prove Lemniall7. The heightf the cap can be easily checked to be equal to
h = 72 /27. Now, the volume of the cap is given by the formula

,/T(dJrl)/QTd
Veap = Wja(d/27 1/2>

where the parameter is defined by

27’h h? r2 1 i
T -2 472 )"

Furtherl, (-, -) represents the incomplete beta function:

I(z,w) = Bl(go(ééziuq;})
B foa w1 —w)* " tdu
B(z,w)
o F(z—|—w) “ z—1 w—1
= T (w) /0 T (1 —w)¥ " du.
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Thus,
N ald+1)/2.,d . I'((d+1)/2)) [ w211 — )~ 24u
“PTT((d+1)/2) T(d/2)T(1/2) /0 o

/27 / p
_ /271(17 )71/2d
u u u
I'(d/2) Jo

d «
= dv%/ u??7 11— w) "V 2du.
0

Sincea — 0 asr — 0, we can approximate the integral by expanding the integesnd Taylor
series aroun@:

d %
Veap = dU;T /o u?/?1 (1 +u/2+ O(uz))du

dogt?® (a?? 1 a¥/?H]
T2 (d/Q +§d/2+1

+ O(ad/2+2)>

= vgrlad/? (1 + 2(d6:— 2)a + O(aQ))> .

2

Finally, usinga := %5 (1 — :—Z), we get

2\ 4/2 2 4

d T dr (r)

cap = 1- ) (1455 55+0(5
Peap = V¥ ( 4T2> < Taarye TOa

dr? dr? T

d

= B T T A r
vdr ( 872 T 2(d+2)r? +Od(74)> ’

which simplifies to the claimed estimate.

We now show that it must be the case that O(7+/¢/d). We argued that for the algorithm to
reliably resolve thdo, €) separated cluster®; and M3, anr-ball around a sample point ifi, .
must have mass appreciably smaller than those around points. By the previous lemma, the
two kinds of balls have volumes

2

r
Ude (1 — Cd1f2 + Od(

2 4 2 4
d r r N d r r
vgr (1_Cd47'2+0d(]_67'4>> = Vqr (1—Cd47_2+0d(7_4)> .

Thus we must have

et
14)> = vgrd (1 —cqr? + Od(r4))

and

2 4

vgriuogre (1 —cqr® + Od(7'4)) A1 =€) < vgr? (1 - Cd& + Od(:‘*)) A

This implies thatr? < O (%). Hence ifr < 1/4, we haver < 74/¢/c¢q. Plugging in

cqa = Q(d) gives us the claim.

A.5 Clustering with noisy samples
A.6 Proof of Theorem[IQ

As before we begin by showing separation followed by a prdafomnectivity. Recall thap :=

min (%, 753, 57)-
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Lemma 18 (Separation) Assume that we pidk » and R to satisfy the conditions:
r<p, R = 4p

7 - vgri(1 — €/6) - /\> +f\/ )

k
m-vgrd(14€/6) - A1 —¢e)+ (1 —7)-vprP < o ?\/ku.
Then with probabilityl — §, it holds that:

1. AllpointsinAs,q—r andAM ., arekept, and all points i\ M,. andS,,_,. are removed.
Here, M,. is the tubular region around/ of widthr.

2. The two point setd [X] and A’[X] are disconnected in the gragh, z.

Proof. The proof of the first claim is similar to the noiseless sefttiaxcept that the probability
mass inside a ball now has contributions from both the mah#nad the background clutter. For

r € S,_,, the probability mass of the bal(x,r) underQ is at mostrvgre(1l + ¢/6) - A(1 —

€) + (1 — m)vpr?, which is at mostt — Cs -5.\/kp. Thusz is removed during the cleaning step.
Similarly, if x ¢ M,, the ball B(x, ) does not intersect the manifold, and hence its mass is at most
(1 —m)vprP. Hence all points outsid&/, are removed. Finally, i € (Ayso—r U Ay, ,_,) N X,

then the mass of the bally; (x, r) is at least r?(1 —€/6) A (ignoring the contribution of the noise).
This is at Ieasfg + %\/k , and hence: is kept.

To prove the second claim, suppose that gefsX and A’ N X are connected i, . Then there
exists a sequence of sample poig§sy:, - - ., y: such thatyy € A, y; € A’ andd(y;—1,v;) < R
forall 1 <4 < t. Letz; be the projection ofj; on M, i.e., z; is the point ofM closest toy;. We
have already showed that eaghlies inside the tubé/,., sod(z;,y;) < r, and hence by triangle
inequality, we havel(z;_1,2;) < R+ 2r < 7/4. Hence, the geodesic distance between and
x; is < 2(R + 2r). Now, by an argument analogous to the noiseless settingg thésts a pair
(z;—1, ;) which are at a (geodesic) distance at leist — ). This is a contradiction since our
parameter setting implies thao — r) > 2(R + 2r). O

Lemma 19 (Connectedness) Assume that the parametégrsr and R satisfy the separation condi-
tions (in Lemm@&Z8). Then, with probability at ledst §, A N'Y is connected itG,. .

Proof. The proof of this lemma is identical to Leminha 9 and is omitted.

We now show how to pick the parameters to satisfy the conditimé Lemma18. Sek :=
144C%(u/€?), and define- by

mvgrt(l —e/6) -\ = k + %\/ku.
non

Itis easy to check that this setting satisfies all our requénats, provided that the terfh — 7 )vpr?”
arising from the clutter noise satisfies the additional trest

(1= mvpr? < (¢/2) x mvar®A.

1/d
The definition ofr implies thatr is upper bounded bf ) . Thus it suffices to ensure that

NATUg

(1 mop ( 2k )D/d <(ef2)- H ot

NATUg

This is equivalent to the condition
2" (L-m¥P (kTP
vged/ D T ’

which is assumed by Theordm] 10.

n
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A.7 Proof of Theorem[1]]

Let P be a distribution on a manifold/ with density f. Let X = (X;i,...,X,) be the latent
sample fromP, and letY = (Y3,...,Y,) be the observed sample. The only fact that we use
about the observed sample is that it is close to the correspgiatent sample pointi(Y;, X;) < 6,
whered is thenoise radius We show that we can adapt the RSL algorithm to res@lve) separated
clusters(A, A’), provided tha# is sufficiently small compared to bothande.

Again, we will pick values foik, r, R based on a parametgrdefined a := min(%, 57, 197 )-

Lemma 20 (Separation) Supposé:;, r, R are chosen to satisfy
0<r/2 r<p R:=5hp,

va(r —20)4(1 —€/6) - X > ky %\/k 7
n n

va(r +20)(1+¢€/6) - A(1 —€) < E_GCs 7

n

3

then, with probabilityl — d, the following holds uniformly over alb, €) separated cluster&4, A’):

1. If a latent sample poink; € Anro—ri20 U A’MJ_H%, then the corresponding sample
pointY; is kept during the cleaning step. Xf; € Sir»—r—_20, thenY; is removed.

2. ThesetgY; : X; € A} and{Y; : X; € A'} are disconnected in the grafgh, r.

Proof. To prove the first claim, supposé; € A,_, 129 U A;_H%. Consider the balB, (X;, r —
20). Itis completely insided s, U A’ ., hence the density inside it is at leash. Moreover, if
X, isin By (X5, r — 26), then by triangle inequality, we have

dy;, ;) <d(X;Y;) +d(X;, X)) +d(Y;, X)) <r

Hence the ballB(X;,r) contains at least sample points, provide®,, (X;,r — 26) contains at
leastk points fromX. Finally, the true mass of the sBW(Xi7 r — 26) is at least

va(r —20)%(1 — €/6) - /\>7+ \/
Hence it contains at leaktlatent sample points, and we are done.

Similarly, supposeX; € S,_,_20, and consider the bal,; (X, r+26). Itis completely contained
inside S, and hence the density inside the ball is at mqdt— ¢). Moreover, ifX is outside the
set, then

d(Y;,Y:) > d(X;, X;) — d(X;,Y;) — d(X;,Y;) > r

Hence the ballB(Y;,r) contains fewer thak sample points, provide®,, (X;,r + 26) contains
fewer thank points fromX. The true mass of the balty; (X;,r + 29) is at most

k
va(r +20)% (1 +€/6) - M1 — €) < - — \/
Hence the ball contains fewer tharatent sample points, and we are done.

We now prove that the graphi, r is disconnected. Suppose not. Then there must exist a segjuen
of latent sample pointsg, z1,...,z; € Y and a corresponding sequence of noisy sample points
Yo, .-,y € X suchthaty € A, 2y € A’, andd(y;—1,y;) < R. Clearlyd(z;—1,z;) < R+ 20 <

7/4. Thus the geodesic distance betwegn, andz; is less thar2(R + 26). However, by théo, €)
separation condition, we must have a successive(pain, z;) whose geodesic distance is at least
2(o — ). This is a contradiction since we have set our parametefstsat2(c — r) > 2(R + 26).
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Lemma 21 (Connectedness) Assume that the conditions of Lemma 20 are satisfied. Théim, wi
probability at leastl — 4, the following holds uniformly over alli: if inf,c4,, , f(x) > A, then
{Y; : X; € A} isconnected iz, r.

Proof. The proof is similar to that of Lemnid 9, so we indicate only tleeessary modifications,
omitting the details. We now use a net of rad{us — 26)/4, and the condition thak > 4r is
replaced byk — 20 > 4r. Finally, thex;’s defined in the proof are latent sample points, whereas the
algorithm observes an arbitrary poigtin a #-ball around ther;. Thus, the distance betwegn ;
andy; is at most

R—20

4- +d(yi, z;) + d(yi—1,xi—1) < R.

O
In order to satisfy the conditions stated in Lenima 20, we rikecissumption tha&is small com-
pared tor. More precisely, we will assume thét< r¢/24d. Under this assumption, we can satisfy
the above conditions by ensuring that

vgr®(1 —e/12)(1 — €/6) - X > &\/k ,
n

G

var®(1+¢€/6)(1+¢/6) - M1 —¢) < = — =2 —Vkp

As before, we can satisfy these equations by setting O(C% /€ ), andr according to

vgrd(1 —e/12)(1 — €/6) - A = % + %\/ﬁ

w:\w

3

A.8 Connection radiusfor polynomially bounded densities

In this section, we prove that in our algorithm (Figlie 1),ca® pick the connection radiugto be
R := 4r, independent of the other parameters, provided that thsitgdavel satisfies\ < n* for
some absolute constadt (Our original setting picked® = 4p andr < p.)

More precisely, we will argue that the parametein the algorithm can be safely replaced by a
related parameter := 2Alogn without affecting the performance of the algorithm. Pick=
O(C211/€?), and setr, R by the equations

a1 k| Calog(1/0) ,—
var /\_1—6/6 n+7n VEkir,
R =4r.

The crucial ingredient in the analysis of our algorithm is tmiform convergence property of balls
centered at the sample points and net points (Lefdma 6), sostediify that this statement remains
true. Note that by our choice of we have

>

S|

varia >

S

so thatl /r? < vgn) < vgndt!t < nAt! (sincewvy < 1 for sufficiently larged). As before, we
consider a netV of radiusR/4 (i.e., r); by LemmaIb, size of this net is at mast/r¢ for some
absolute constant > 0. Thus by Lemm&l6, we have the uniform convergence propemy;iged
the parametey: is replaced by

logn 4 log |N| = logn + log(1/r%) + O(1) = (A + 2)logn + O(1).

Notice thaty is picked to be a safe upper bound on this quantity, hencesthenh holds whep is
replaced byi.

Finally, it is easy to check that our choice of parametersfied all the conditions given in the
separation lemma. Hence the separation and connectedrasstges (Lemmas 8 9), together
with their proofs, remain unaffected.
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