
A Additional proofs

In this section we first prove some technical lemmas before giving full proofs of various claims made
in the paper.

A.1 Volume estimates for small balls on manifolds

Theorem 12 If

r ≤ ǫτ

12d
for 0 ≤ ǫ < 1 then

vdr
d (1− ǫ) ≤ vol(S) ≤ vdr

d (1 + ǫ) .

Proof. The lower bound follows from Niyogi et al. (2008) (Lemma 5.3)who show that

Lemma 13 For r < τ
2

vol(S) ≥
(
1− r2

4τ2

)d/2

vdr
d.

The upper bound follows from Chazal (2013) who shows that

Lemma 14 For r < τ
2

vol(S) ≤ vd

(
τ

τ − 2α

)d

αd

where

α = τ − τ

√
1− 2r

τ
.

To produce the result of the theorem we will need some carefulmanipulation of these two lemmas.
In particular, we need the following estimates

Lemma 15
f(x) = (1− x)1/2 ≥ 1− x

2
− x2

if 0 ≤ x ≤ 1
2 .

f(x) = (1 + x)n ≤ 1 + 2nx

if 0 ≤ x ≤ 1
2n .

f(x) = (1− x)−1 ≤ 1 + 2x

if 0 ≤ x ≤ 1/2.
f(x) = (1− x)n ≥ 1− 2nx

if 0 ≤ x ≤ 1
2n .

The proof of this lemma is straightforward based on approximations via Taylor’s series and we omit
them.

Using Lemma 15 we have

α ≤ r

(
1 +

4r

τ

)

if r ≤ τ
4 . Now, using this also notice that

τ

τ − 2α
≤ 1

1− 2r
τ

(
1 + 4r

τ

) ≤ 1 +
4r

τ

(
1 +

4r

τ

)
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where the second inequality follows from Lemma 15 ifr ≤ τ/8.

Combining these we have the following:

for all r ≤ τ
8

vdr
d

(
1− r2

4τ2

)d/2

≤ vol(S) ≤ vdr
d

(
1 +

6r

τ

)d

The final result now follows another application of Lemma 15 on each side of this inequality.�

A.2 Bound on covering number

We need the following bound on the covering number of a manifold. See the paper Niyogi et al.
(2008) (p. 16) for a proof.

Lemma 16 For s ≤ 2τ , thes-covering number ofM is at most

vold(M)

cosd(arcsin(s/4τ))vd(s/2)d
≤ O

(
vold(M)cd

vdsd

)

for an absolute constantc. In particular, if vold(M) is bounded above by a constant, thes-covering
number ofM is at mostO(cd/(vds

d)).

Proof. We prove only the second claim. Fors ≤ 2τ , we havearcsin(s/4τ) ≤ π/6, and hence
cos(arcsin(s/4τ)) ≥

√
3/2. Plugging this in the bound, we get

|N | ≤ vold(M)(2/
√
3)d

vd(s/2)d
,

which gives the claim withc = 4/
√
3. �

A.3 Uniform convergence

In this subsection, we prove uniform convergence for balls centered on sample and net points

(Lemma 6). Consider the family of balls centered at a fixed point z, Bz :=
{
B(z, s) : s ≥ 0

}
.

This collection has VC dimension1. Thus with probability1 − δ′, it holds that for everyB ∈ Bz,
we have

max
{P (B)− Pn(B)√

P (B)
,
P (B)− Pn(B)√

Pn(B)

}
≤ 2

√
log(2n) + log(4/δ′)

n
,

whereP (B) is the true mass ofB, andPn(B) = |X ∩ B|/n is its empirical measure. By a union
bound over allz ∈ N , settingδ′ := δ/(2|N |), the following holds uniformly for everyz ∈ N and
everyB ∈ Bz with probability1− δ/2:

max
{P (B)− Pn(B)√

P (B)
,
P (B)− Pn(B)√

Pn(B)

}
≤ 2

√
log(2n) + log(8|N |/δ)

n
.

To provide a similar uniform convergence result for balls centered at a sample pointXi, we consider
the (n − 1)-subsampleXn−1

i of X obtained by deletingXi from the sample. LetPn−1
i be the

empirical probability measure of this subsample:

Pn−1(B) :=
1

n− 1

∑

j 6=i

I[Xi ∈ B].

It is easy to check thatPn−1 is uniformly close toPn. In particular, for every setB containingXi,
we have

Pn−1(B) ≤ Pn(B) ≤ Pn−1(B) +
1

n
. (2)
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Now, with probability at least1− δ/(2n), for any ballB centered atXi,

P (B)− Pn−1(B) ≤ 2

√
log(2n− 2) + log 8n/δ

n− 1
·
√

P (B),

Pn−1(B)− P (B) ≤ 2

√
log(2n− 2) + log 8n/δ

n− 1
·
√

Pn−1(B).

Using (2), we get

P (B)− Pn(B) ≤ 2

√
log(2n− 2) + log 8n/δ

n− 1
·
√

P (B),

Pn(B)− P (B) ≤ 2

√
log(2n− 2) + log 8n/δ

n− 1
·
√

Pn(B) +
1

n
.

By a union bound over allXi ∈ X, we get the claimed inequalities for all sample points with
probability1− δ/2.

Putting together our bounds for balls around sample and net points, with probability at least1 − δ,
it holds that for allB ∈ Bn,N , we have

P (B)− Pn(B) ≤ O
(√µ+ log(1/δ)

n

)
·
√

P (B),

Pn(B)− P (B) ≤ O
(√µ+ log(1/δ)

n

)
·
√

Pn(B) +
1

n
.

for µ = 1 + log n + log |N | = O(d) + log n + d log(1/s) (using Lemma 16). The lemma now
follows using simple manipulations of these inequalities (see Chaudhuri and Dasgupta (2010) for
details).

A.4 Sketch of the lower bound instance

The following lemma gives an estimate of the volume of the intersection of a small ball with a
sphere.

Lemma 17 (Volume of a spherical cap) SupposeSd is a d-dimensional sphere of radiusτ (em-
bedded inRd+1), and letx ∈ S

d. Then, for small enoughr, it holds that

vold(B(x, r) ∩ S
d) = vdr

d

(
1− cd

r2

τ2
+Od

( r4

τ4

))

wherecd := d(d−2)
8(d+2) . Note thatc1 < 0, c2 = 0, andcd > 0 for all d ≥ 3.

In this section, we prove Lemma 17. The heighth of the cap can be easily checked to be equal to
h = r2/2τ . Now, the volume of the cap is given by the formula

vcap =
π(d+1)/2τd

Γ((d+ 1)/2)
Iα(d/2, 1/2)

where the parameterα is defined by

α :=
2τh− h2

τ
=

r2

τ2

(
1− r2

4τ2

)
.

FurtherIα(·, ·) represents the incomplete beta function:

Iα(z, w) =
B(α; z, w)

B(z, w)

=

∫ α

0
uz−1(1− u)w−1du

B(z, w)

=
Γ(z + w)

Γ(z)Γ(w)

∫ α

0

uz−1(1− u)w−1du.
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Thus,

vcap =
π(d+1)/2τd

Γ((d+ 1)/2)
· Γ((d+ 1)/2))

Γ(d/2)Γ(1/2)
·
∫ α

0

ud/2−1(1− u)−1/2du

=
πd/2τd

Γ(d/2)

∫ α

0

ud/2−1(1− u)−1/2du

=
dvdτ

d

2

∫ α

0

ud/2−1(1− u)−1/2du.

Sinceα → 0 asr → 0, we can approximate the integral by expanding the integrandas a Taylor
series around0:

vcap =
dvdτ

d

2

∫ α

0

ud/2−1
(
1 + u/2 +O(u2)

)
du

=
dvdτ

d

2

(
αd/2

d/2
+

1

2

αd/2+1

d/2 + 1
+O(αd/2+2)

)

= vdτ
dαd/2

(
1 +

d

2(d+ 2)
α+O(α2))

)
.

Finally, usingα := r2

τ2 (1− r2

τ2 ), we get

vcap = vdr
d

(
1− r2

4τ2

)d/2 (
1 +

dr2

2(d+ 2)τ2
+O

( r4

τ4

))

= vdr
d ·

(
1− dr2

8τ2
+

dr2

2(d+ 2)τ2
+Od

( r4

τ4

))
,

which simplifies to the claimed estimate.

We now show that it must be the case thatr ≤ O(τ
√

ǫ/d). We argued that for the algorithm to
reliably resolve the(σ, ǫ) separated clustersM1 andM3, anr-ball around a sample point inSσ−r

must have mass appreciably smaller than those around pointsin M1. By the previous lemma, the
two kinds of balls have volumes

vdr
d

(
1− cd

r2

12
+Od

(r4
14

))
= vdr

d
(
1− cdr

2 +Od(r
4)
)

and

vdr
d

(
1− cd

r2

4τ2
+Od

( r4

16τ4

))
= vdr

d

(
1− cd

r2

4τ2
+Od

( r4

τ4

))
.

Thus we must have

vdr
dvdr

d
(
1− cdr

2 +Od(r
4)
)
· λ(1− ǫ) ≤ vdr

d

(
1− cd

r2

4τ2
+Od

( r4

τ4

))
· λ.

This implies thatr2 ≤ O
(

4τ2ǫ
(1−4τ2)cd

)
. Hence ifτ ≤ 1/4, we haver ≤ τ

√
ǫ/cd. Plugging in

cd = Ω(d) gives us the claim.

A.5 Clustering with noisy samples

A.6 Proof of Theorem 10

As before we begin by showing separation followed by a proof of connectivity. Recall thatρ :=
min

(
σ
7 ,

ǫτ
72d ,

τ
24

)
.
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Lemma 18 (Separation) Assume that we pickk, r andR to satisfy the conditions:

r ≤ ρ, R = 4ρ

π · vdrd(1− ǫ/6) · λ ≥ k

n
+

Cδ

n

√
kµ,

π · vdrd(1 + ǫ/6) · λ(1− ǫ) + (1− π) · vDrD ≤ k

n
− Cδ

n

√
kµ.

Then with probability1− δ, it holds that:

1. All points inAM,σ−r andA′
M,σ−r are kept, and all points inX\Mr andSσ−r are removed.

Here,Mr is the tubular region aroundM of widthr.

2. The two point setsA[X] andA′[X] are disconnected in the graphGr,R.

Proof. The proof of the first claim is similar to the noiseless setting, except that the probability
mass inside a ball now has contributions from both the manifold and the background clutter. For
x ∈ Sσ−r, the probability mass of the ballB(x, r) underQ is at mostπvdrd(1 + ǫ/6) · λ(1 −
ǫ) + (1 − π)vDrD, which is at mostkn − Cδ

n

√
kµ. Thusx is removed during the cleaning step.

Similarly, if x /∈ Mr, the ballB(x, r) does not intersect the manifold, and hence its mass is at most
(1− π)vDrD. Hence all points outsideMr are removed. Finally, ifx ∈ (AM,σ−r ∪A′

M,σ−r) ∩X,
then the mass of the ballBM (x, r) is at leastvdrd(1−ǫ/6)λ (ignoring the contribution of the noise).
This is at leastkn + Cδ

n

√
kµ, and hencex is kept.

To prove the second claim, suppose that setsA ∩X andA′ ∩X are connected inGr,R. Then there
exists a sequence of sample pointsy0, y1, . . . , yt such thaty0 ∈ A, yt ∈ A′ andd(yi−1, yi) ≤ R
for all 1 ≤ i ≤ t. Let xi be the projection ofyi onM , i.e.,xi is the point ofM closest toyi. We
have already showed that eachyi lies inside the tubeMr, sod(xi, yi) ≤ r, and hence by triangle
inequality, we haved(xi−1, xi) ≤ R + 2r ≤ τ/4. Hence, the geodesic distance betweenxi−1 and
xi is < 2(R + 2r). Now, by an argument analogous to the noiseless setting, there exists a pair
(xi−1, xi) which are at a (geodesic) distance at least2(σ − r). This is a contradiction since our
parameter setting implies that2(σ − r) ≥ 2(R+ 2r). �

Lemma 19 (Connectedness) Assume that the parametersk, r andR satisfy the separation condi-
tions (in Lemma 18). Then, with probability at least1− δ, A ∩Y is connected inGr,R.

Proof. The proof of this lemma is identical to Lemma 9 and is omitted.�

We now show how to pick the parameters to satisfy the conditions in Lemma 18. Setk :=
144C2

δ (µ/ǫ
2), and definer by

πvdr
d(1− ǫ/6) · λ =

k

n
+

Cδ

n

√
kµ.

It is easy to check that this setting satisfies all our requirements, provided that the term(1−π)vDrD

arising from the clutter noise satisfies the additional constraint

(1− π)vDrD ≤ (ǫ/2)× πvdr
dλ.

The definition ofr implies thatr is upper bounded by
(

2k
nλπvd

)1/d

. Thus it suffices to ensure that

(1− π)vD

(
2k

nλπvd

)D/d

≤ (ǫ/2) · 2k
n

=
kǫ

n
.

This is equivalent to the condition

λ ≥ 2v
d/D
D

vdǫd/D
· (1− π)d/D

π
·
(
k

n

)1−d/D

,

which is assumed by Theorem 10.
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A.7 Proof of Theorem 11

Let P be a distribution on a manifoldM with densityf . Let X = (X1, . . . , Xn) be the latent
sample fromP , and letY = (Y1, . . . , Yn) be the observed sample. The only fact that we use
about the observed sample is that it is close to the corresponding latent sample point:d(Yi, Xi) ≤ θ,
whereθ is thenoise radius. We show that we can adapt the RSL algorithm to resolve(σ, ǫ) separated
clusters(A,A′), provided thatθ is sufficiently small compared to bothσ andǫ.

Again, we will pick values fork, r, R based on a parameterρ, defined asρ := min(σ7 ,
τ
24 ,

ǫτ
144d ).

Lemma 20 (Separation) Supposek, r, R are chosen to satisfy

θ ≤ r/2 r ≤ ρ R := 5ρ,

vd(r − 2θ)d(1− ǫ/6) · λ ≥ k

n
+

Cδ

n

√
kµ,

vd(r + 2θ)d(1 + ǫ/6) · λ(1− ǫ) ≤ k

n
− Cδ

n

√
kµ,

then, with probability1− δ, the following holds uniformly over all(σ, ǫ) separated clusters(A,A′):

1. If a latent sample pointXi ∈ AM,σ−r+2θ ∪ A′
M,σ−r+2θ, then the corresponding sample

pointYi is kept during the cleaning step. IfXi ∈ SM,σ−r−2θ, thenYi is removed.

2. The sets{Yi : Xi ∈ A} and{Yi : Xi ∈ A′} are disconnected in the graphGr,R.

Proof. To prove the first claim, supposeXi ∈ Aσ−r+2θ ∪A′
σ−r+2θ. Consider the ballBM (Xi, r−

2θ). It is completely insideAM,σ ∪ A′
M,σ, hence the densityf inside it is at leastλ. Moreover, if

Xj is inBM (Xi, r − 2θ), then by triangle inequality, we have

d(Yj , Yi) ≤ d(Xj , Yj) + d(Xj , Xi) + d(Yi, Xi) ≤ r.

Hence the ballB(Xi, r) contains at leastk sample points, providedBM (Xi, r − 2θ) contains at
leastk points fromX. Finally, the true mass of the setBM (Xi, r − 2θ) is at least

vd(r − 2θ)d(1− ǫ/6) · λ ≥ k

n
+

Cδ

n

√
kµ.

Hence it contains at leastk latent sample points, and we are done.

Similarly, supposeXi ∈ Sσ−r−2θ, and consider the ballBM (Xi, r+2θ). It is completely contained
insideSM,σ and hence the density inside the ball is at mostλ(1− ǫ). Moreover, ifXj is outside the
set, then

d(Yj , Yi) ≥ d(Xj , Xj)− d(Xi, Yi)− d(Xj , Yj) > r.

Hence the ballB(Yi, r) contains fewer thank sample points, providedBM (Xi, r + 2θ) contains
fewer thank points fromX. The true mass of the ballBM (Xi, r + 2θ) is at most

vd(r + 2θ)d(1 + ǫ/6) · λ(1− ǫ) ≤ k

n
− Cδ

n

√
kµ.

Hence the ball contains fewer thank latent sample points, and we are done.

We now prove that the graphGr,R is disconnected. Suppose not. Then there must exist a sequence
of latent sample pointsx0, x1, . . . , xt ∈ Y and a corresponding sequence of noisy sample points
y0, . . . , yt ∈ X such thatx0 ∈ A, xt ∈ A′, andd(yi−1, yi) ≤ R. Clearlyd(xi−1, xi) ≤ R + 2θ ≤
τ/4. Thus the geodesic distance betweenxi−1 andxi is less than2(R+2θ). However, by the(σ, ǫ)
separation condition, we must have a successive pair(xi−1, xi) whose geodesic distance is at least
2(σ − r). This is a contradiction since we have set our parameters such that2(σ − r) ≥ 2(R+ 2θ).
�
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Lemma 21 (Connectedness) Assume that the conditions of Lemma 20 are satisfied. Then, with
probability at least1 − δ, the following holds uniformly over allA: if infx∈AM,σ

f(x) ≥ λ, then
{Yi : Xi ∈ A} is connected inGr,R.

Proof. The proof is similar to that of Lemma 9, so we indicate only thenecessary modifications,
omitting the details. We now use a net of radius(R − 2θ)/4, and the condition thatR ≥ 4r is
replaced byR− 2θ ≥ 4r. Finally, thexi’s defined in the proof are latent sample points, whereas the
algorithm observes an arbitrary pointyi in a θ-ball around thexi. Thus, the distance betweenyi−1

andyi is at most

4 · R− 2θ

4
+ d(yi, xi) + d(yi−1, xi−1) ≤ R.

�

In order to satisfy the conditions stated in Lemma 20, we needthe assumption thatθ is small com-
pared tor. More precisely, we will assume thatθ ≤ rǫ/24d. Under this assumption, we can satisfy
the above conditions by ensuring that

vdr
d(1− ǫ/12)(1− ǫ/6) · λ ≥ k

n
+

Cδ

n

√
kµ,

vdr
d(1 + ǫ/6)(1 + ǫ/6) · λ(1− ǫ) ≤ k

n
− Cδ

n

√
kµ

As before, we can satisfy these equations by settingk := O(C2
δµ/ǫ

2), andr according to

vdr
d(1− ǫ/12)(1− ǫ/6) · λ =

k

n
+

Cδ

n

√
kµ.

A.8 Connection radius for polynomially bounded densities

In this section, we prove that in our algorithm (Figure 1), wecan pick the connection radiusR to be
R := 4r, independent of the other parameters, provided that the density level satisfiesλ ≤ nA for
some absolute constantA. (Our original setting pickedR = 4ρ andr ≤ ρ.)

More precisely, we will argue that the parameterµ in the algorithm can be safely replaced by a
related parameter̃µ := 2A log n without affecting the performance of the algorithm. Pickk =
O(C2

δ µ̃/ǫ
2), and setr,R by the equations

vdr
dλ =

1

1− ǫ/6

(
k

n
+

C2 log(1/δ)

n

√
kµ̃

)
,

R = 4r.

The crucial ingredient in the analysis of our algorithm is the uniform convergence property of balls
centered at the sample points and net points (Lemma 6), so we first verify that this statement remains
true. Note that by our choice ofr, we have

vdr
dλ ≥ k

n
≥ 1

n
,

so that1/rd ≤ vdnλ ≤ vdn
A+1 ≤ nA+1 (sincevd < 1 for sufficiently larged). As before, we

consider a netN of radiusR/4 (i.e., r); by Lemma 16, size of this net is at mostcd/rd for some
absolute constantc > 0. Thus by Lemma 6, we have the uniform convergence property, provided
the parameterµ is replaced by

log n+ log |N | = log n+ log(1/rd) +O(1) = (A+ 2) log n+O(1).

Notice thatµ̃ is picked to be a safe upper bound on this quantity, hence the lemma holds whenµ is
replaced bỹµ.

Finally, it is easy to check that our choice of parameters satisfies all the conditions given in the
separation lemma. Hence the separation and connectedness guarantees (Lemmas 8 and 9), together
with their proofs, remain unaffected.
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