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A Proofs

Proof of Theorem 1 First, the probability of an example di ∈ D is:

Prθ(di) =
�

x∼di

�

x|u∼x

θx|u

where operator ∼ denotes compatibility between two instantiations (they set the same value to com-
mon variables). For a fixed parameter set θX|u, the probability Prθ(di) is a linear function with
respect to the parameters of θX|u:

Prθ(di) = Prθ(¬u,di) +
�

x

Prθ(xu,di)

= Prθ(¬u,di) +
�

x

∂Prθ(di)

∂θx|u
θx|u

= C
i
u[θ] +

�

x

C
i
x|u[θ] · θx|u

where C
i
u[θ] and C

i
x|u[θ] are constants with respect to θX|u. Moreover Prθ(¬u,di) = Prθ(di) −

Prθ(u,di). Thus our sub-function, the negative log-likelihood with respect to parameter set θX|u,
has the form:

fθ�(θX|u) = −
N�

i=1

log
�
C

i
u[θ

�] +
�

x

C
i
x|u[θ

�] · θx|u
�
.

�

Proof of Theorem 2 The log-likelihood of soft evidence in this model is:

logP(η|θX|u) =
N�

i=1

logP(ηi|θX|u)

=
N�

i=1

log
�

xi

P(ηi|xi, θX|u)P(xi|θX|u)

=
N�

i=1

log
�

xi

P(ηi|xi) · θx|u.

If we substitute P(ηi|xi) = C
i
u[θ

�] + C
i
x|u[θ

�], we have

logP(η|θX|u) =
N�

i=1

log
�

x

�
C

i
u[θ

�] + C
i
x|u[θ

�]
�
· θx|u

=
N�

i=1

log
�
C

i
u[θ

�] +
�

x

C
i
x|u[θ

�]θx|u
�

which is Equation 2, negated. �

Proof of Theorem 3 Suppose that θ∗ is optimal for Equation 6. Multiplying an arbitrary θ
∗
Xa

by
a constant, results in multiplying both Zθ, and Zθ(di), by the same constant, which cancels out
in each pair of terms, logZθ − logZθ(di), preserving the same optimal objective value. Thus, one
could always find an optimal θ where θXa ∝ θ

∗
Xa

, that is optimal for Equation 6, and where Zθ = α.

Thus, fixing Zθ = α does not exclude the optimal solution for Equation 6, which can be now reduced
to:

f(θ) = N logα−
N�

i=1

logZθ(di) (9)
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with a feasibility constraint that Zθ = α.

Equation 9 is equivalent to Equation 7, since N logα is a constant. As a result, if g(θ) is feasible
and optimal for Equation 7, then any θ, where θXa ∝ g(θXa) ∀ Xa is optimal for Equation 6. We
will next prove the second part of the theorem.

The partial derivative of the log likelihood ��(θ|D) w.r.t. parameter θxa is:

∂��

∂θxa

= −N

Zθ

∂Zθ

∂θxa

+
N�

i=1

1

Zθ(di)

∂Zθ(di)

∂θxa

.

First, note that:
1
Zθ

∂Zθ
∂θxa

θxa = Pr(xa), 1
Zθ(di)

∂Zθ(di)
∂θxa

θxa = Prθ(xa|di)

Thus, with some re-arranging, we obtain:

Prθ(xa) =
1

N

N�

i=1

Prθ(xa|di) (10)

which is the “moment matching” condition for parameter estimation in Markov networks. Second,
consider the simplified objective: f(θ) = −

�N
i=1 logZθ(di) which is subject to the constraint

Z = α. We construct the Lagrangian L(θ, ν) = f(θ) + ν(Z − α). Setting to zero the partial
derivative w.r.t. ν, we obtain our constraint Z = α. The partial derivative w.r.t. parameter θxa is:

−
N�

i=1

1

Zθ(di)

∂Zθ(di)

∂θxa

+ ν
∂Zθ

∂θxa

.

We set the partial derivative to zero, multiply the second term by α
Z = 1, and re-arrange, giving us:

ναPrθ(xa) =
N�

i=1

Prθ(xa | di).

Summing each equation for all instantiations xa, we identify ν = N
α , which after substitution, gives

us a condition equivalent to Equation 10.

Note that the stationary condition given by Equation 10 depends only on marginals, not the absolute
value of the partition function. Moreover, applying a proper feasibility function g(θ), where θXa ∝
g(θXa) ∀ Xa, will not change the marginals implied by θ, as the multiplicative factors cancel out in
each pair of terms, logZθ − logZθ(di). Thus if a point θ satisfies Equation 10, then g(θ) must also
satisfy it. Similarly, if g(θ) satisfies Equation 10, the original point θ must also satisfy it. �

Proof of Theorem 4 First, the partition function conditioned on an example di ∈ D is:

Zθ(di) =
�

x∼di

�

xa∼x

θxa

where operator ∼ denotes compatibility between two instantiations (they set the same value to com-
mon variables). For a given parameter set θXa , the partition function Zθ(di) is a linear function
with respect to the parameters θXa :

Zθ(di) =
�

xa

Zθ(xa,di) =
�

xa

∂Zθ(di)

∂θxa

θxa

=
�

xa

C
i
xa
[θ] · θxa

where C
i
xa
[θ] is a constant with respect to θXa . Thus, our sub-function, has the form:

fθ�(θXa) = −
N�

i=1

log
�

xa

C
i
xa
[θ�] · θxa .
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Figure 2: A meta network induced from a base network S←−H−→E. The CPTs here are based on
standard semantics; see, e.g., [8], Ch. 18.

On the other hand, the constraint Zθ = α takes the form:

Zθ =
�

xa

Zθ(xa) =
�

xa

∂Zθ

∂θxa

θxa =
�

xa

Cxaθxa = α

�

Theorem 5 Suppose we have a feasibility function

g(y1, . . . , yn) = (x1, . . . , xn)

where xi �= yi implies that the point (x1, . . . , yi, . . . , xn) is infeasible (e.g., Euclidean projection

satisfies this condition). Suppose now that the algorithm produces a sequence x
t
, y

t+1
, x

t+1 = x
t
.

Then x
t

must be a feasible and stationary point.

Proof By the statement of the iterative procedure, xt is guaranteed to be feasible. Suppose that
g(yt+1) = x

t+1 = x
t. First, it must be that yt+1 = x

t. Suppose instead that yt+1 �= x
t, and

thus for some component, yt+1
i �= x

t
i. By our feasibility function, (xt

1, . . . , y
t+1
i , . . . , x

t
n) must be

infeasible. However, Step 2(a) ensures that (xt
1, . . . , y

t+1
i , . . . , x

t
n) is feasible. Hence, it must be

that yt+1 = x
t. Further, by Step 2(a) and Claim 1, xt must also be stationary. �

B A Review of EDML

EDML is a recent method for learning Bayesian network parameters from incomplete data [6, 18].
It is based on Bayesian learning in which one formulates estimation in terms of computing posterior
distributions on network parameters. That is, given a Bayesian network, one constructs a corre-
sponding meta network in which parameters are explicated as variables, and on which the given
dataset D can be asserted as evidence; see Figure 2. One then estimates parameters by consider-
ing the posterior distribution obtained from conditioning the meta network on the given dataset D.
Suppose for example that the meta network induces distribution P and let θ denote an instantiation
of variables that represent parameters in the meta network. One can then obtain MAP parameter
estimates by computing argmaxθ P(θ|D) using inference on the meta network.

It is known that meta networks tend to be too complex for exact inference algorithms, especially
when the dataset is large enough. The basic insight behind EDML was to adapt a specific approxi-
mate inference scheme to meta networks with the goal of computing MAP parameter estimates. In
particular, the original derivation of EDML adapted the approximate inference algorithm proposed
by [5], in which edges are deleted from a Bayesian network to make it sparse enough for exact
inference, followed by a compensation scheme that attempts to improve the quality of the approxi-
mations obtained from the edge-deleted network. The adaptation of this inference method to meta
networks is shown in Figure 3. The two specific techniques employed here were to augment each
edge θX|u−→X

i by an auxiliary variable X
i
u, leading to θX|u−→X

i
u−→X

i, where X
i
u−→X

i is
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Figure 3: An edge-deleted network obtained from the meta network in Figure 2. Highlighted are the
island for example d2 and the island for parameter set θS|h.

Algorithm 1 EDML

input:

G: A Bayesian network structure
D: An incomplete dataset d1, . . . ,dN

θ: An initial parameterization of structure G
αX|u,βX|u: Beta prior for each random variable X|u
1: while not converged do

2: Pr← distribution induced by θ and G
3: Compute Bayes factors:

κi
x|u←

Pr(xu|di)/Pr(x|u)− Pr(u|di) + 1
Pr(x̄u|di)/Pr(x̄|u)− Pr(u|di) + 1

for each family instantiation xu and example di

4: Update parameters:

θx|u← argmax
p

[p]αX|u−1[1− p]βX|u−1
N�

i=1

[κi
x|u · p− p+ 1]

5: return parameterization θ

an equivalence edge. This is followed by deleting the equivalence edge. This technique yielded a
disconnected meta network with two classes of sub-networks, called parameter islands and network

islands.

Deleting edges, as proposed by [5], leads to introducing two auxiliary nodes in the Bayesian net-
work for each deleted edge. Moreover, approximate inference by edge deletion follows the deletion
process by a compensation scheme that searches for appropriate CPTs of these auxiliary nodes. As
it turns out, the search for these CPTs, which is done iteratively, was amenable to a very intuitive
interpretation as shown in [6].

In particular, one set of CPTs corresponded to soft evidence on network parameters, where each
network island contributes one piece of soft evidence for each network parameter. The second set
of CPTs corresponded to updated parameter estimates, where each parameter island contributes an
estimate of its underlying parameter set. This interpretation was the basis for the form of EDML
shown in Algorithm 1.15 EDML iterates just like EM does, producing new estimates after each

15This form is specific to binary variables; a multi-valued generalization was provided in [18].
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iteration. However, EDML iterations can be viewed as having two phases. In the first phase, each
example in the data set is used to compute a piece of soft evidence on each parameter set (Line 3
of Algorithm 1). In the second phase, the pieces of soft evidence pertaining to each parameter set
are used to compute a new estimate of that set (by solving the convex optimization problem on Line
4 of Algorithm 1). The process repeats until some convergence criteria is met. Aside from this
optimization task, EM and EDML have the same computational complexity.
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