
A Additional Algorithm Details

Let us analyze and optimize the computational cost for updates in the boosting algorithm 2. NT
HTH 0

T in Step 5 is just conceptual. The bottleneck is the conic/local search in Step 4, and the
computation of rG(NT�1

) in Step 3. Here we will show that the whole boosting algorithm can be
run by only using HT , and thanks for this explicit decomposition of NT , the gradient of G in both
N and H can be computed considerably faster than just having NT .

A.1 Faster Gradient Calculation by Low Rank Decomposition

Recall that G consists mainly of two parts: the first layer objective in (11) and the second layer
objective in (7). We just show how to solve the first layer, while the technique can be applied
directly to the second layer too. For simplicity, we only consider linear kernel on X , and extension
to nonlinear kernel is also straightforward.

For convenience we copy (11) to here, using NT and HT :

min

W
L
1

(WX,HT) +
↵
2

kWk2F = min

W

˜L
1

(H 0
TWX,H 0

THT) +
↵
2

kWk2F (22)

= min

C

˜L
1

(H 0
THTCX 0X,H 0

THT) +
�
2

tr(XC 0H 0
THTCX 0

) (23)

= min

D2Im(NT)

˜L
1

(DK,NT) +
↵
2

tr(D0N†
TDK). (24)

Denote this objective as G
1

(N) or H
1

(H). The boosting Step 4 indeed only requires the gradient
rH

1

(HT), while the gradient rG
1

(NT) is needed only in Step 3. So we focus on the efficient
computation of these two gradients.

To compute rH
1

(HT), it suffices to optimize over W in (22). This is advantageous because a) the
objective is strongly convex which is in favor of LBFGS; b) the size of W is nT , where T is the
iteration index of boosting and is often quite small; c) the gradient in W can be computed in O(tnT)
time, which can also benefit from the low value of T .

To compute rG
1

(NT), one possible approach is to solve for C in (23):

min

C

˜L
1

(NTCX 0X,NT) +
�
2

tr(XC 0NTCX 0
). (25)

However, the cost for computing the gradient in C is O(t2n), which is expensive if done at each
iteration of optimization. Therefore we introduce one more change of variable: E = CX 0 and then
the problem becomes

min

E

˜L
1

(NTEX,NT) +
�
2

tr(E0NTE). (26)

So our final strategy is:

• Find the optimal W ⇤ for (22) as in computing rH
1

(HT),
• Recover the optimal E⇤ for (26) by finding any E that satisfies W ⇤

= HTE,
• Use E⇤ to compute the gradient rG

1

(NT) via (26).

The first and second steps can make use of the low value of T as in computing rH
1

(HT). The last
step does cost O(t2n), but it needs to be done only once, rather than in each iteration of solving for
C in (25). So in summary, the total computational cost is O(tnT) per iteration in optimizing W ,
followed by O(t2n) for one time to recover E⇤ and to compute rG

1

(NT) via (26).

B Additional details on the experimental data

For the “real” experiments we used a collection of binary labeled data sets: USPS (241 ⇥ 1500)
and G241N (241⇥ 1500) from [40], Letter (vowel letters A-E vs non vowel letters B-F 16⇥ 3098)
from [41], MNIST ({1, 9}vs{4, 8}: 784⇥28484), and CIFAR-100 (bicycle and motorcycle vs lawn-
mower and tank 256⇥ 1526 where red channel features are preprocessed by averaging pixels) from
[42].

10

	Introduction
	Two-Layer Conditional Modeling
	Multi-Layer Perceptrons and Large-Margin Losses

	Equivalent Reformulation
	Convex Relaxation
	Efficient Training Approach
	Experimental Evaluation
	Conclusion
	Additional Algorithm Details
	Faster Gradient Calculation by Low Rank Decomposition

	Additional details on the experimental data

