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Abstract

We study the power of different types of adaptive (nonoblivious) adversaries in
the setting of prediction with expert advice, under both full-information and ban-
dit feedback. We measure the player’s performance using a new notion of regret,
also known as policy regret, which better captures the adversary’s adaptiveness
to the player’s behavior. In a setting where losses are allowed to drift, we char-
acterize —in a nearly complete manner— the power of adaptive adversaries with
bounded memories and switching costs. In particular, we show that with switch-
ing costs, the attainable rate with bandit feedback is Θ̃(T 2/3). Interestingly, this
rate is significantly worse than the Θ(

√
T ) rate attainable with switching costs in

the full-information case. Via a novel reduction from experts to bandits, we also
show that a bounded memory adversary can force Θ̃(T 2/3) regret even in the full
information case, proving that switching costs are easier to control than bounded
memory adversaries. Our lower bounds rely on a new stochastic adversary strat-
egy that generates loss processes with strong dependencies.

1 Introduction

An important instance of the framework of prediction with expert advice —see, e.g., [8]— is defined
as the following repeated game, between a randomized player with a finite and fixed set of available
actions and an adversary. At the beginning of each round of the game, the adversary assigns a loss to
each action. Next, the player defines a probability distribution over the actions, draws an action from
this distribution, and suffers the loss associated with that action. The player’s goal is to accumulate
loss at the smallest possible rate, as the game progresses. Two versions of this game are typically
considered: in the full-information feedback version, at the end of each round, the player observes
the adversary’s assignment of loss values to each action. In the bandit feedback version, the player
only observes the loss associated with his chosen action, but not the loss values of other actions.

We assume that the adversary is adaptive (also called nonoblivious by [8] or reactive by [16]), which
means that the adversary chooses the loss values on round t based on the player’s actions on rounds
1 . . . t − 1. We also assume that the adversary is deterministic and has unlimited computational
power. These assumptions imply that the adversary can specify his entire strategy before the game
begins. In other words, the adversary can perform all of the calculations needed to specify, in
advance, how he plans to react on each round to any sequence of actions chosen by the player.

More formally, letA denote the finite set of actions and let Xt denote the player’s random action on
round t. We adopt the notation X1:t as shorthand for the sequence X1 . . . Xt. We assume that the
adversary defines, in advance, a sequence of history-dependent loss functions f1, f2, . . .. The input
to each loss function ft is the entire history of the player’s actions so far, therefore the player’s loss
on round t is ft(X1:t). Note that the player doesn’t observe the functions ft, only the losses that
result from his past actions. Specifically, in the bandit feedback model, the player observes ft(X1:t)
on round t, whereas in the full-information model, the player observes ft(X1:t−1, x) for all x ∈ A.
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On any round T , we evaluate the player’s performance so far using the notion of regret, which
compares his cumulative loss on the first T rounds to the cumulative loss of the best fixed action in
hindsight. Formally, the player’s regret on round T is defined as

RT =

T∑
t=1

ft(X1:t)−min
x∈A

T∑
t=1

ft(x . . . x) . (1)

RT is a random variable, as it depends on the randomized action sequence X1:t. Therefore, we also
consider the expected regret E[RT ]. This definition is the same as the one used in [18] and [3] (in
the latter, it is called policy regret), but differs from the more common definition of expected regret

E

[
T∑
t=1

ft(X1:t)−min
x∈A

T∑
t=1

ft(X1:t−1, x)

]
. (2)

The definition in Eq. (2) is more common in the literature (e.g., [4, 17, 10, 16]), but is clearly inade-
quate for measuring a player’s performance against an adaptive adversary. Indeed, if the adversary is
adaptive, the quantity ft(X1:t−1, x)is hardly interpretable —see [3] for a more detailed discussion.

In general, we seek algorithms for which E[RT ] can be bounded by a sublinear function of T ,
implying that the per-round expected regret, E[RT ]/T , tends to zero. Unfortunately, [3] shows that
arbitrary adaptive adversaries can easily force the regret to grow linearly. Thus, we need to focus on
(reasonably) weaker adversaries, which have constraints on the loss functions they can generate.

The weakest adversary we discuss is the oblivious adversary, which determines the loss on round t
based only on the current action Xt. In other words, this adversary is oblivious to the player’s past
actions. Formally, the oblivious adversary is constrained to choose a sequence of loss functions that
satisfies ∀t, ∀x1:t ∈ At, and ∀x′1:t−1 ∈ At−1,

ft(x1:t) = ft(x
′
1:t−1, xt) . (3)

The majority of previous work in online learning focuses on oblivious adversaries. When dealing
with oblivious adversaries, we denote the loss function by `t and omit the first t−1 arguments. With
this notation, the loss at time t is simply written as `t(Xt).

For example, imagine an investor that invests in a single stock at a time. On each trading day he
invests in one stock and suffers losses accordingly. In this example, the investor is the player and the
stock market is the adversary. If the investment amount is small, the investor’s actions will have no
measurable effect on the market, so the market is oblivious to the investor’s actions. Also note that
this example relates to the full-information feedback version of the game, as the investor can see the
performance of each stock at the end of each trading day.

A stronger adversary is the oblivious adversary with switching costs. This adversary is similar to the
oblivious adversary defined above, but charges the player an additional switching cost of 1 whenever
Xt 6= Xt−1. More formally, this adversary defines his sequence of loss functions in two steps: first
he chooses an oblivious sequence of loss functions, `1, `2 . . ., which satisfies the constraint in Eq. (3).
Then, he sets f1(x) = `1(x), and

∀ t ≥ 2, ft(x1:t) = `t(xt) + I{xt 6=xt−1} . (4)

This is a very natural setting. For example, let us consider again the single-stock investor, but now
assume that each trade has a fixed commission cost. If the investor keeps his position in a stock for
multiple trading days, he is exempt from any additional fees, but when he sells one stock and buys
another, he incurs a fixed commission. More generally, this setting (or simple generalizations of it)
allows us to capture any situation where choosing a different action involves a costly change of state.
In the paper, we will also discuss a special case of this adversary, where the loss function `t(x) for
each action is sampled i.i.d. from a fixed distribution.

The switching costs adversary defines ft to be a function of Xt and Xt−1, and is therefore a special
case of a more general adversary called an adaptive adversary with a memory of 1. This adversary
is constrained to choose loss functions that satisfy ∀t, ∀x1:t ∈ At, and ∀x′1:t−2 ∈ At−2,

ft(x1:t) = ft(x
′
1:t−2, xt−1, xt) . (5)

This adversary is more general than the switching costs adversary because his loss functions can
depend on the previous action in an arbitrary way. We can further strengthen this adversary and
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define the bounded memory adaptive adversary, which has a bounded memory of an arbitrary size.
In other words, this adversary is allowed to set his loss function based on the player’s m most recent
past actions, where m is a predefined parameter. Formally, the bounded memory adversary must
choose loss functions that satisfy, ∀t, ∀x1:t ∈ At, and ∀x′1:t−m−1 ∈ At−m−1,

ft(x1:t) = ft(x
′
1:t−m−1, xt−m:t) .

In the information theory literature, this setting is called individual sequence prediction against loss
functions with memory [18].

In addition to the adversary types described above, the bounded memory adaptive adversary has
additional interesting special cases. One of them is the delayed feedback oblivious adversary of
[19], which defines an oblivious loss sequence, but reveals each loss value with a delay ofm rounds.
Since the loss at time t depends on the player’s action at time t−m, this adversary is a special case
of a bounded memory adversary with a memory of size m. The delayed feedback adversary is not a
focus of our work, and we present it merely as an interesting special case.

So far, we have defined a succession of adversaries of different strengths. This paper’s goal is
to understand the upper and lower bounds on the player’s regret when he faces these adversaries.
Specifically, we focus on how the expected regret depends on the number of rounds, T , with either
full-information or bandit feedback.

1.1 The Current State of the Art

Different aspects of this problem have been previously studied and the known results are surveyed
below and summarized in Table 1. Most of these previous results rely on the additional assumption
that the range of the loss functions is bounded in a fixed interval, say [0, C]. We explicitly make note
of this because our new results require us to slightly generalize this assumption.

As mentioned above, the oblivious adversary has been studied extensively and is the best under-
stood of all the adversaries discussed in this paper. With full-information feedback, both the Hedge
algorithm [15, 11] and the follow the perturbed leader (FPL) algorithm [14] guarantee a regret of
O(
√
T ), with a matching lower bound of Ω(

√
T ) —see, e.g., [8]. Analyses of Hedge in settings

where the loss range may vary over time have also been considered —see, e.g., [9]. The oblivious
setting with bandit feedback, where the player only observes the incurred loss ft(X1:t), is called the
nonstochastic (or adversarial) multi-armed bandit problem. In this setting, the Exp3 algorithm of [4]
guarantees the same regret O(

√
T ) as the full-information setting, and clearly the full-information

lower bound Ω(
√
T ) still applies.

The follow the lazy leader (FLL) algorithm of [14] is designed for the switching costs setting with
full-information feedback. The analysis of FLL guarantees that the oblivious component of the
player’s expected regret (without counting the switching costs), as well as the expected number of
switches, is upper bounded by O(

√
T ), implying an expected regret of O(

√
T ).

The work in [3] focuses on the bounded memory adversary with bandit feedback and guarantees
an expected regret of O(T 2/3). This bound naturally extends to the full-information setting. We
note that [18, 12] study this problem in a different feedback model, which we call counterfactual
feedback, where the player receives a full description of the history-dependent function ft at the end
of round t. In this setting, the algorithm presented in [12] guarantees an expected regret of O(

√
T ).

Learning with bandit feedback and switching costs has mostly been considered in the economics
literature, using a different setting than ours and with prior knowledge assumptions (see [13] for
an overview). The setting of stochastic oblivious adversaries (i.e., oblivious loss functions sampled
i.i.d. from a fixed distribution) was first studied by [2], where they show that O(log T ) switches are
sufficient to asymptotically guarantee logarithmic regret. The paper [20] achieves logarithmic regret
nonasymptotically with O(log T ) switches.

Several other papers discuss online learning against “adaptive” adversaries [4, 10, 16, 17], but these
results are not relevant to our work and can be easily misunderstood. For example, several bandit
algorithms have extensions to the “adaptive” adversary case, with a regret upper bound of O(

√
T )

[1]. This bound doesn’t contradict the Ω(T ) lower bound for general adaptive adversaries mentioned
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oblivious switching cost memory of size 1 bounded memory adaptive
Full-Information Feedback

Õ
√
T

√
T T 2/3 T 2/3 T

Ω
√
T

√
T

√
T

√
T → T 2/3 T

Bandit Feedback

Õ
√
T T 2/3 T 2/3 T 2/3 T

Ω
√
T

√
T → T 2/3

√
T → T 2/3

√
T → T 2/3 T

Table 1: State-of-the-art upper and lower bounds on regret (as a function of T ) against different
adversary types. Our contribution to this table is presented in bold face.

earlier, since these papers use the regret defined in Eq. (2) rather than the regret used in our work,
defined in Eq. (1).

Another related body of work lies in the field of competitive analysis —see [5], which also deals
with loss functions that depend on the player’s past actions, and the adversary’s memory may even
be unbounded. However, obtaining sublinear regret is generally impossible in this case. Therefore,
competitive analysis studies much weaker performance metrics such as the competitive ratio, making
it orthogonal to our work.

1.2 Our Contribution

In this paper, we make the following contributions (see Table 1):

• Our main technical contribution is a new lower bound on regret that matches the existing
upper bounds in several of the settings discussed above. Specifically, our lower bound
applies to the switching costs adversary with bandit feedback and to all strictly stronger
adversaries.

• Building on this lower bound, we prove another regret lower bound in the bounded memory
setting with full-information feedback, again matching the known upper bound.

• We confirm that existing upper bounds on regret hold in our setting and match the lower
bounds up to logarithmic factors.

• Despite the lower bound, we show that for switching costs and bandit feedback, if we
also assume stochastic i.i.d. losses, then one can get a distribution-free regret bound of
O(
√
T log log log T ) for finite action sets, with only O(log log T ) switches. This result

uses ideas from [7], and is deferred to the supplementary material.

Our new lower bound is a significant step towards a complete understanding of adaptive adversaries;
observe that the upper and lower bounds in Table 1 essentially match in all but one of the settings.

Our results have two important consequences. First, observe that the optimal regret against the
switching costs adversary is Θ

(√
T
)

with full-information feedback, versus Θ
(
T 2/3

)
with bandit

feedback. To the best of our knowledge, this is the first theoretical confirmation that learning with
bandit feedback is strictly harder than learning with full-information, even on a small finite action set
and even in terms of the dependence on T (previous gaps we are aware of were either in terms of the
number of actions [4], or required large or continuous action spaces —see, e.g., [6, 21]). Moreover,
recall the regret bound ofO

(√
T log log log T

)
against the stochastic i.i.d. adversary with switching

costs and bandit feedback. This demonstrates that dependencies in the loss process must play a
crucial role in controlling the power of the switching costs adversary. Indeed, the Ω

(
T 2/3

)
lower

bound proven in the next section heavily relies on such dependencies.

Second, observe that in the full-information feedback case, the optimal regret against a switching
costs adversary is Θ(

√
T ), whereas the optimal regret against the more general bounded memory

adversary is Ω(T 2/3). This is somewhat surprising given the ideas presented in [18] and later ex-
tended in [3]: The main technique used in these papers is to take an algorithm originally designed
for oblivious adversaries, forcefully prevent it from switching actions very often, and obtain a new
algorithm that guarantees a regret of O(T 2/3) against bounded memory adversaries. This would
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seem to imply that a small number of switches is the key to dealing with general bounded memory
adversaries. Our result contradicts this intuition by showing that controlling the number of switches
is easier then dealing with a general bounded memory adversary.

As noted above, our lower bounds require us to slightly weaken the standard technical assumption
that loss values lie in a fixed interval [0, C]. We replace it with the following two assumptions:

1. Bounded range. We assume that the loss values on each individual round are bounded
in an interval of constant size C, but we allow this interval to drift from round to round.
Formally, ∀t, ∀x1:t ∈ At and ∀x′1:t ∈ At,∣∣ft(x1:t)− ft(x′1:t)∣∣ ≤ C . (6)

2. Bounded drift. We also assume that the drift of each individual action from round to round
is contained in a bounded interval of size Dt, where Dt may grow slowly, as O

(√
log(t)

)
.

Formally, ∀t and ∀x1:t ∈ At,∣∣ft(x1:t)− ft+1(x1:t, xt)
∣∣ ≤ Dt . (7)

Since these assumptions are a relaxation of the standard assumption, all of the known lower bounds
on regret automatically extend to our relaxed setting. For our results to be consistent with the current
state of the art, we must also prove that all of the known upper bounds continue to hold after the
relaxation, up to logarithmic factors.

2 Lower Bounds

In this section, we prove lower bounds on the player’s expected regret in various settings.

2.1 Ω(T 2/3) with Switching Costs and Bandit Feedback

We begin with a Ω(T 2/3) regret lower bound against an oblivious adversary with switching costs,
when the player receives bandit feedback. It is enough to consider a very simple setting, with only
two actions, labeled 1 and 2. Using the notation introduced earlier, we use `1, `2, . . . to denote the
oblivious sequence of loss functions chosen by the adversary before adding the switching cost.
Theorem 1. For any player strategy that relies on bandit feedback and for any number of rounds T ,
there exist loss functions f1, . . . , fT that are oblivious with switching costs, with a range bounded
by C = 2, and a drift bounded by Dt =

√
3 log(t) + 16, such that E[RT ] ≥ 1

40T
2/3.

The full proof is given in the supplementary material, and here we give an informal proof sketch.
We begin by constructing a randomized adversarial strategy, where the loss functions `1, . . . , `T are
an instantiation of random variables Lt, . . . , LT defined as follows. Let ξ1, . . . , ξT be i.i.d. standard
Gaussian random variables (with zero mean and unit variance) and let Z be a random variable that
equals −1 or 1 with equal probability. Using these random variables, define for all t = 1 . . . T

Lt(1) =

t∑
s=1

ξs , Lt(2) = Lt(1) + ZT−1/3 . (8)

In words, {Lt(1)}Tt=1 is simply a Gaussian random walk and {Lt(2)}Tt=1 is the same random walk,
slightly shifted up or down —see figure 1 for an illustration. It is straightforward to confirm that this
loss sequence has a bounded range, as required by the theorem: by construction we have |`t(1) −
`t(2)| = T−1/3 ≤ 1 for all t, and since the switching cost can add at most 1 to the loss on each
round, we conclude that |ft(1) − ft(2)| ≤ 2 for all t. Next, we show that the expected regret
of any player against this random loss sequence is Ω(T 2/3), where expectation is taken over the
randomization of both the adversary and the player. The intuition is that the player can only gain
information about which action is better by switching between them. Otherwise, if he stays on
the same action, he only observes a random walk, and gets no further information. Since the gap
between the two losses on each round is T−1/3, the player must perform Ω(T 2/3) switches before
he can identify the better action. If the player performs that many switches, the total regret incurred
due to the switching costs is Ω(T 2/3). Alternatively, if the player performs o(T 2/3) switches, he
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Figure 1: A particular realization of the random loss sequence defined in Eq. (8). The sequence of
losses for action 1 follows a Gaussian random walk, whereas the sequence of losses for action 2
follows the same random walk, but slightly shifted either up or down.

can’t identify the better action; as a result he suffers an expected regret of Ω(T−1/3) on each round
and a total regret of Ω(T 2/3).

Since the randomized loss sequence defined in Eq. (8), plus a switching cost, achieves an expected
regret of Ω(T 2/3), there must exist at least one deterministic loss sequence `1 . . . `T with a regret of
Ω(T 2/3). In our proof, we show that there exists such `1 . . . `T with bounded drift.

2.2 Ω(T 2/3) with Bounded Memory and Full-Information Feedback

We build on Thm. 1 and prove a Ω(T 2/3) regret lower bound in the full-information setting, where
we get to see the entire loss vector on every round. To get this strong result, we need to give the
adversary a little bit of extra power: memory of size 2 instead of size 1 as in the case of switching
costs. To show this result, we again consider a simple setting with two actions.
Theorem 2. For any player strategy that relies on full-information feedback and for any number of
rounds T ≥ 2, there exist loss functions f1, . . . , fT , each with a memory of size m = 2, a range
bounded by C = 2, and a drift bounded byDt =

√
3 log(t) + 18, such that E[RT ] ≥ 1

40 (T −1)2/3.

The formal proof is deferred to the supplementary material and a proof sketch is given here. The
proof is based on a reduction from full-information to bandit feedback that might be of independent
interest. We construct the adversarial loss sequence as follows: on each round, the adversary assigns
the same loss to both actions. Namely, the value of the loss depends only on the player’s previous two
actions, and not on his action on the current round. Recall that even in the full-information version of
the game, the player doesn’t know what the losses would have been had he chosen different actions
in the past. Therefore, we have made the full-information game as difficult as the bandit game.
Specifically, we construct an oblivious loss sequence `1 . . . `T as in Thm. 1 and define

ft(x1:t) = `t−1(xt−1) + I{xt−1 6=xt−2} . (9)

In words, we define the loss on round t of the full-information game to be equal to the loss on round
t − 1 of a bandits-with-switching-costs game in which the player chooses the same sequence of
actions. This can be done with a memory of size 2, since the loss in Eq. (9) is fully specified by the
player’s choices on rounds t, t − 1, t − 2. Therefore, the Ω(T 2/3) lower bound for switching costs
and bandit feedback extends to the full-information setting with a memory of size at least 2.

3 Upper Bounds

In this section, we show that the known upper bounds on regret, originally proved for bounded
losses, can be extended to the case of losses with bounded range and bounded drift. Specifically, of
the upper bounds that appear in Table 1, we prove the following:

• O(
√
T ) for an oblivious adversary with switching costs, with full-information feedback.

• Õ(
√
T ) for an oblivious adversary with bandit feedback (where Õ hides logarithmic factors).

• Õ(T 2/3) for a bounded memory adversary with bandit feedback.
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The remaining upper bounds in Table 1 are either trivial or follow from the principle that an upper
bound still holds if we weaken the adversary or provide a more informative feedback.

3.1 O(
√
T ) with Switching Costs and Full-Information Feedback

In this setting, ft(x1:t) = `t(xt) + I{xt 6=xt−1}. If the oblivious losses `1 . . . `T (without the addi-
tional switching costs) were all bounded in [0, 1], the Follow the Lazy Leader (FLL) algorithm of
[14] would guarantee a regret of O(

√
T ) with respect to these losses (again, without the additional

switching costs). Additionally, FLL guarantees that its expected number of switches is O(
√
T ).

We use a simple reduction to extend these guarantees to loss functions with a range bounded in an
interval of size C and with an arbitrary drift.

On round t, after choosing an action and receiving the loss function `t, the player defines the modi-
fied loss `′t(x) = 1

C−1
(
`t(x) −miny `t(y)

)
and feeds it to the FLL algorithm. The FLL algorithm

then chooses the next action.

Theorem 3. If each of the loss functions f1, f2, . . . is oblivious with switching costs and has a range
bounded by C then the player strategy described above attains O(C

√
T ) expected regret.

The full proof is given in the supplementary material but the proof technique is straightforward. We
first show that each `′t is bounded in [0, 1] and therefore the standard regret bound for FLL holds
with respect to the sequence of modified loss functions `′1, `

′
2, . . .. Then we show that the guarantees

provided for FLL imply a regret of O(
√
T ) with respect to the original loss sequence f1, f2, . . ..

3.2 Õ(
√
T ) with an Oblivious Adversary and Bandit Feedback

In this setting, ft(x1:t) simply equals `t(xt). The reduction described in the previous subsection
cannot be used in the bandit setting, since minx `t(x) is unknown to the player, and a different
reduction is needed. The player sets a fixed horizon T and focuses on controlling his regret at time
T ; he can then use a standard doubling trick [8] to handle an infinite horizon. The player uses the
fact that each ft has a range bounded by C. Additionally, he defines D = maxt≤T Dt and on each
round he defines the modified loss

f ′t(x1:t) =
1

2(C +D)

(
`t(xt)− `t−1(xt−1)

)
+

1

2
. (10)

Note that f ′t(X1:t) can be computed by the player using only bandit feedback. The player then feeds
f ′t(X1:t) to an algorithm that guarantees aO(

√
T ) standard regret (see definition in Eq. (2)) against

a fixed action. The Exp3 algorithm, due to [4], is such an algorithm. The player chooses his actions
according to the choices made by Exp3. The following theorem states that this reduction results in
a bandit algorithm that guarantees a regret of Õ(

√
T ) against oblivious adversaries.

Theorem 4. If each of the loss functions f1 . . . fT is oblivious with a range bounded by C and
a drift bounded by Dt = O

(√
log(t)

)
then the player strategy described above attains Õ(C

√
T )

expected regret.

The full proof is given in the supplementary material. In a nutshell, we show that each f ′t is a loss
function bounded in [0, 1] and that the analysis of Exp3 guarantees a regret ofO(

√
T ) with respect to

the loss sequence f ′1 . . . f
′
T . Then, we show that this guarantee implies a regret of (C+D)O(

√
T ) =

Õ(C
√
T ) with respect to the original loss sequence f1 . . . fT .

3.3 Õ(T 2/3) with Bounded Memory and Bandit Feedback

Proving an upper bound against an adversary with a memory of size m, with bandit feedback,
requires a more delicate reduction. As in the previous section, we assume a finite horizon T and we
let D = maxtDt. Let K = |A| be the number of actions available to the player.

Since fT (x1:t) depends only on the last m + 1 actions in x1:t, we slightly overload our notation
and define ft(xt−m:t) to mean the same as ft(x1:t). To define the reduction, the player fixes a base
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action x0 ∈ A and for each t > m he defines the loss function

f̂t(xt−m:t) =
1

2
(
C + (m+ 1)D

)(ft(xt−m:t)− ft−m−1(x0 . . . x0)
)

+
1

2
.

Next, he divides the T rounds into J consecutive epochs of equal length, where J = Θ(T 2/3). We
assume that the epoch length T/J is at least 2K(m+ 1), which is true when T is sufficiently large.
At the beginning of each epoch, the player plans his action sequence for the entire epoch. He uses
some of the rounds in the epoch for exploration and the rest for exploitation. For each action in A,
the player chooses an exploration interval of 2(m+ 1) consecutive rounds within the epoch. These
K intervals are chosen randomly, but they are not allowed to overlap, giving a total of 2K(m + 1)
exploration rounds in the epoch. The details of how these intervals are drawn appears in our analysis,
in the supplementary material. The remaining T/J − 2K(m+ 1) rounds are used for exploitation.

The player runs the Hedge algorithm [11] in the background, invoking it only at the beginning of
each epoch and using it to choose one exploitation action that will be played consistently on all of the
exploitation rounds in the epoch. In the exploration interval for action x, the player first plays m+ 1
rounds of the base action x0 followed by m + 1 rounds of the action x. Letting tx denote the first
round in this interval, the player uses the observed losses ftx+m(x0 . . . x0) and ftx+2m+1(x . . . x)

to compute f̂tx+2m+1(x . . . x). In our analysis, we show that the latter is an unbiased estimate of
the average value of f̂t(x . . . x) over t in the epoch. At the end of the epoch, the K estimates are fed
as feedback to the Hedge algorithm.

We prove the following regret bound, with the proof deferred to the supplementary material.
Theorem 5. If each of the loss functions f1 . . . fT is has a memory of size m, a range bounded
by C, and a drift bounded by Dt = O

(√
log(t)

)
then the player strategy described above attains

Õ(T 2/3) expected regret.

4 Discussion

In this paper, we studied the problem of prediction with expert advice against different types of
adversaries, ranging from the oblivious adversary to the general adaptive adversary. We proved
upper and lower bounds on the player’s regret against each of these adversary types, in both the
full-information and the bandit feedback models. Our lower bounds essentially matched our up-
per bounds in all but one case: the adaptive adversary with a unit memory in the full-information
setting, where we only know that regret is Ω(

√
T ) and O(T 2/3). Our bounds have two important

consequences. First, we characterize the regret attainable with switching costs, and show a setting
where predicting with bandit feedback is strictly more difficult than predicting with full-information
feedback —even in terms of the dependence on T , and even on small finite action sets. Second, in
the full-information setting, we show that predicting against a switching costs adversary is strictly
easier than predicting against an arbitrary adversary with a bounded memory. To obtain our re-
sults, we had to relax the standard assumption that loss values are bounded in [0, 1]. Re-introducing
this assumption and proving similar lower bounds remains an elusive open problem. Many other
questions remain unanswered. Can we characterize the dependence of the regret on the number of
actions? Can we prove regret bounds that hold with high probability? Can our results be generalized
to more sophisticated notions of regret, as in [3]?

In addition to the adversaries discussed in this paper, there are other interesting classes of adversaries
that lie between the oblivious and the adaptive. A notable example is the family of deterministically
adaptive adversaries, which includes adversaries that adapt to the player’s actions in a known de-
terministic way, rather than in a secret malicious way. For example, imagine playing a multi-armed
bandit game where the loss values are initially oblivious, but whenever the player chooses an arm
with zero loss, the loss of the same arm on the next round is deterministically changed to zero. Many
real-world online prediction scenarios are deterministically adaptive, but we lack a characterization
of the expected regret in this setting.
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Learning Research, 12:1655–1695, 2011.

[7] N. Cesa-Bianchi, C. Gentile, and Y. Mansour. Regret minimization for reserve prices in
second-price auctions. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA13), 2013.

[8] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University Press,
2006.

[9] N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for prediction
with expert advice. Machine Learning, 66(2/3):321–352, 2007.

[10] V. Dani and T. P. Hayes. Robbing the bandit: Less regret in online geometric optimization
against an adaptive adversary. In Proceedings of the Seventeenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 2006.

[11] Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and System Sciences, 55(1):119–139, 1997.

[12] A. Gyorgy and G. Neu. Near-optimal rates for limited-delay universal lossy source coding. In
IEEE International Symposium on Information Theory, pages 2218–2222, 2011.

[13] T. Jun. A survey on the bandit problem with switching costs. De Economist, 152:513–541,
2004.

[14] A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal of Com-
puter and System Sciences, 71:291–307, 2005.

[15] N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and Com-
putation, 108:212–261, 1994.

[16] O. Maillard and R. Munos. Adaptive bandits: Towards the best history-dependent strategy. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
2010.

[17] H. B. McMahan and A. Blum. Online geometric optimization in the bandit setting against an
adaptive adversary. In Proceedings of the Seventeenth Annual Conference on Learning Theory,
2004.

[18] N. Merhav, E. Ordentlich, G. Seroussi, and M.J. Weinberger. Sequential strategies for loss
functions with memory. IEEE Transactions on Information Theory, 48(7):1947–1958, 2002.

[19] C. Mesterharm. Online learning with delayed label feedback. In Proceedings of the Sixteenth
International Conference on Algorithmic Learning Theory, 2005.

[20] R. Ortner. Online regret bounds for Markov decision processes with deterministic transitions.
Theoretical Computer Science, 411(29–30):2684–2695, 2010.

[21] O. Shamir. On the complexity of bandit and derivative-free stochastic convex optimization.
CoRR, abs/1209.2388, 2012.

9



Appendices
A Distribution-free regret bound for bandits with switching costs

In this appendix we adapt results of [7] to show a strategy that achieves O
(√
T log log log T

)
regret

against any i.i.d. oblivious adversary in the bandit setting with switching costs, assuming a finite
action setA = {1 . . .K}. The strategy used by this stochastic adversary is specified by a probability
distribution over oblivious loss functions. The oblivious loss function for each step t = 1, 2, . . . is
the realization on an independent draw Lt from this distribution. The regret of a player choosing
actions X0 = X1, X2, . . . is defined by

RT =

T∑
t=1

Et
[
Lt(Xt) + I{Xt 6=Xt−1}

]
−min
x∈A

T∑
t=1

E
[
Lt(x)

]
where the expectation E is over the random draw of each Lt and the possible randomization of the
player, and the expectation Et is conditioned over X1, L1(X1), . . . , Xt−1, Lt−1(Xt−1).

Our result focuses on loss distributions such that the law of each marginal L1(x) is subgaussian.
A random variable Z is subgaussian if there exist constants b, c such that for any a > 0 P

(
Z >

EZ + a
)
≤ be−ca2 and P

(
Z < EZ − a

)
≤ be−ca2 . One can then show that, for any i.i.d. sequence

Z1, . . . , ZT of subgaussian random variables,

P

(∣∣∣∣∣ 1

T

T∑
t=1

Zt − EZ1

∣∣∣∣∣ >
√

112b

cT
ln

1

δ

)
≤ δ . (11)

In the following, we use the notation E
[
Lt(x)

]
= µ(x) and µ∗ = min

x∈A
µ(x) .

Theorem 6. Consider a finite action setA = {1 . . .K}. Then for each T there exists a deterministic
player strategy for the bandit game with i.i.d. oblivious adversaries and switching costs, whose
regret after T steps isO

(√
T log log log T

)
with high probability, provided the distribution of L1(x)

is sugaussian for each x ∈ A.

Proof. Consider the following player that proceeds in stages. At each stage s = 1, 2, . . . , S, the
player maintains a set As ⊆ A of active actions. Each action is played Ts/|As| times in a round-
robin fashion, where Ts = T 1−2−s

is the total number of plays in stage s and T is the known
horizon. Note that the overall number of switches is at most KS, where

S = min

{
j ∈ N :

j∑
s=1

Ts ≥ T

}
= O

(
ln lnT

)
.

Let µ̂s(x) the sample mean of losses for action x in stage s, and define

x̂s = argmin
x∈As

µ̂s(x)

the best empirical action in stage s. The sets As of active actions are defined as follows: A1 = A
and

As =
{
x ∈ Ai−1 : µ̂s−1(x) ≤ µ̂s−1(x̂s−1) + 2Cs−1

}
where

Cs =

√
112(b/c)

K

Ts
ln
KS

δ
.

Note that AS ⊆ · · · ⊆ A1 by construction. Also, using (11) and the union bound we have that

max
x∈As

∣∣µ̂s(x)− µ(x)
∣∣ ≤ Cs (12)

simultaneously for all s = 1, . . . , S with probability at least 1− δ.

We claim the following.
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Claim 1. With probability at least 1− δ,

x∗ ∈
S⋂
s=1

As and 0 ≤ µ̂s(x∗)− µ̂s(x̂s) ≤ 2Cs for all s = 1, . . . , S.

Proof of Claim. We prove the lemma by induction on s = 1, . . . , S. We first show that the base case
s = 1 holds with probability at least 1− δ/S. Then we show that if the claim holds for s− 1, then
it holds for s with probability at least 1− δ/S over all random events in stage s. Therefore, using a
union bound over s = 1, . . . , S we get that the claim holds simultaneously for all s with probability
at least 1− δ.

For the base case s = 1 note that x∗ ∈ A1 by definition, and thus µ̂1(x̂1) ≤ µ̂1(x∗) holds. Moreover,
using (12) we obtain that

µ̂1(x∗)− µ(x∗) ≤ C1 and µ(x̂1)− µ̂1(x̂1) ≤ C1

holds with probability at least 1− δ/S. Since µ(x∗)− µ(x̂1) ≤ 0 by definition of x∗, we obtain

0 ≤ µ̂1(x∗)− µ̂1(x̂1) ≤ 2C1

as required. We now prove the claim for s > 1 using the inductive assumption

x∗ ∈ As−1 and 0 ≤ µ̂s−1(x∗)− µ̂s−1(x̂s−1) ≤ 2Cs−1 .

The inductive assumption directly implies that x∗ ∈ As. Thus we have µ̂i(x̂s) ≤ µ̂s(x
∗), because

x̂s minimizes µ̂s over a set that contains x∗. The rest of the proof of the claim closely follows that
of the base case s = 1. �

Now, for any s = 1, . . . , S and for any x ∈ As we have that

µ(x)− µ(x∗) ≤ µ̂s−1(x)− µ(x∗) + Cs−1 by (12)
≤ µ̂s−1(x̂s−1)− µ(x∗) + 3Cs−1 by definition of As−1, since x ∈ As ⊆ As−1
≤ µ̂s−1(x∗)− µ(x∗) + 3Cs−1 since x̂s−1 minimizes µ̂s−1 in As−1
≤ 4Cs−1 by (12)

holds with probability at least 1− δ/S. Hence, recalling that

T∑
t=1

I{Xt 6=Xt−1} ≤ KS

holds deterministically, the regret of the player over the T plays can be bounded as follows

KS +

T∑
t=1

(
µ(Xt)− µ∗

)
= KS +

S∑
s=1

Ts
|As|

∑
x∈As

(
µ(x)− µ∗

)
= KS +

T1
K

K∑
i=1

(
µ(x)− µ∗

)
+

S∑
s=2

Ts
|As|

∑
x∈As

(
µ(x)− µ∗

)
≤ KS + T1µ

∗ +

S∑
i=2

4Ts

√
112(b/c)

K

Ts
ln
KS

δ

= KS + T1µ
∗ + 4

√
112(b/c)K ln

KS

δ

S∑
s=2

Ts√
Ts−1

Now, since T1 =
√
T , Ts/

√
Ts−1 =

√
T and S = O

(
ln lnT

)
, we obtain that with probability at

least 1− δ the regret is at most of order

K ln lnT + µ∗
√
T +

√
KT

(
ln
K

δ
+ ln ln lnT

)
as desired.
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B Proof of Thm. 1

As mentioned in the text, we first consider the player’s expected regret against a randomized adver-
sary. Specifically, we define

∀t Lt(1) =

t∑
s=1

ξs and Lt(2) = Lt(1) + Zε ,

where ξ1 . . . ξT are independent standard Gaussians, Z equals −1 or 1 with equal probability, and ε
is the gap between the losses of the two actions (which will later be set to ε = T−1/3).

Next, we assume for now, without loss of generality, that the player is deterministic. A determin-
istic player chooses each action Xt as a deterministic function of the random losses suffered on
the previous rounds, L1(X1) . . . Lt−1(Xt−1). We can make this assumption because any random-
ized player strategy can be seen as a distribution over deterministic player strategies, and since the
randomization used by the adversary is independent of the player’s strategy.

In the results below, P denotes the distribution of the randomized adversary. We also introduce the
conditional distributions S = P(· | Z > 0) (i.e., 1 is the better action) and Q = P(· | Z < 0) (i.e.,
2 is the better action). Since Z has an equal probability of being negative or positive, it holds that
P = 1

2 (S + Q).

We begin with the following technical lemma.
Lemma 1. Let I{xt−1 6=xt} indicate whether the player switched actions on round t (and 1 for t = 1).
Then for any event A, ∣∣S(A)−Q(A)

∣∣ ≤ ε
√√√√E

[
T∑
t=1

I{Xt 6=Xt−1}

]
where the expectation in the right-hand side is with respect to P.

Proof. To show this, we use the chain rule for relative entropy, which implies

DKL

(
S
∥∥ Q) =

T∑
t=1

DKL

(
St−1

∥∥ Qt−1) (13)

where St−1 and Qt−1 denote the distributions of the player’s loss Lt(xt) conditioned on
L1, . . . , Lt−1, when the joint distribution of L1, . . . , LT is, respectively, S and Q.

Let us focus on a particular term DKL

(
St−1

∥∥Qt−1) and a particular realization of the random losses
L1, . . . , Lt−1. Since we assume a deterministic player strategy, for any such realization the player’s
choices x1:t are all determined, and we deterministically have that the player either switched or not
at time t. If he did not switch, then Lt(xt) is distributed as Lt−1(xt−1) + ξt under both measures
St−1 and Qt−1, so the relative entropy between them is zero. If he did switch, then Lt(xt) is
distributed as Lt−1(xt−1) − ε + ξ under St−1 (where the switch is towards the best action), and as
Lt−1(xt−1) + ε+ ξ under Qt−1 (where the switch is towards the worst action). Hence, the relative
entropy is the same as two standard Gaussians whose means are shifted by 2ε, namely 2ε2. So
overall, we can upper bound Eq. (13) by

2ε2 E

[
T∑
t=1

I{Xt 6=Xt−1}

∣∣∣∣Z > 0

]
. (14)

Using a similar argument, we also show that DKL

(
Q
∥∥ S) is upper bounded by Eq. (14) in which the

conditioning onZ > 0 is replaced byZ < 0. Then, Pinsker’s inequality implies that
∣∣S(A)−Q(A)

∣∣2
is at most

ε2

2

(
E

[
T∑
t=1

I{Xt 6=Xt−1}

∣∣∣∣Z > 0

]
+ E

[
T∑
t=1

I{Xt 6=Xt−1}

∣∣∣∣Z < 0

])
= ε2E

[
T∑
t=1

I{Xt 6=Xt−1}

]
which gives the desired bound.
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With this lemma, we can prove a lower bound on the expected regret for randomized adversaries.

Lemma 2. By picking ε = T−1/3, the expected regret of any deterministic player strategy, over the
randomness of the adversary, is at least 1

10T
2/3.

Proof. LetA be the event that the worst action (action 2 if Z > 0, and 1 if Z < 0) was picked by the
player at least T/2 times. Also, let ST =

∑T
t=1 I{Xt 6=Xt−1} be the number of switches the player

performs. Then

E[RT ] ≥ E
[
max

{
ST ,

εT

2
I{A}

}]
≥ E

[
1

2

(
ST +

εT

2
I{A}

)]
=

1

2
E[ST ] +

εT

4
P(A) .

Moreover, letting A1 denote the event that the player chose action 1 at least T/2 times, and letting
A2 denote the event that the player chose action 2 at least T/2 times, we have P(A) = 1

2

(
S(A2) +

Q(A1)
)
. Substituting this, we get

1

2
E[ST ] +

εT

8

(
S(A2) + Q(A1)

)
.

Using Lemma 1 to lower bound Q(A1) via S(A1), we get a lower bound of

1

2
E[ST ] +

εT

8

(
S(A2) + S(A1)− ε

√
E[ST ]

)
≥ 1

2
E[ST ] +

εT

8

(
S(A1 ∪A2)− ε

√
E[ST ]

)
=

1

2
E[ST ] +

εT

8

(
1− ε

√
E[ST ]

)
=

1

2
E[ST ]− ε2T

8

√
E[ST ] +

εT

8
,

where we used a union bound and the fact that either A1 or A2 always holds. This is a quadratic
function of

√
E[ST ], and it is easily verified that the lowest possible value it can attain (for any value

of E[ST ]) is
εT

8
− ε4T 2

128
.

Picking ε = T−1/3, this equals
(
1
8 −

1
128

)
T 2/3 > 1

10T
2/3.

The lemma above tells us that for the randomized adversary strategy we have devised, the expected
regret for any deterministic player is at least 1

10T
2/3. This implies that there exist some deterministic

adversarial strategy, for which the expected regret of any possibly randomized player is at least
1
10T

2/3. However, we are not done yet, since this strategy doesn’t guarantee that the losses have
bounded drift: In our case, the variation is governed by a potentially unbounded Gaussian random
variable, so the deterministic adversary strategy that we picked might have an arbitrarily large drift.
So now, our goal will be to show that there exists some deterministic adversarial strategy for which
the expected regret is large, and the variation is bounded. To do this, the plan is to show that the
probabilities (over the adversary’s strategy) of the two events are large, summing to a number larger
than one. This means there is some realization of the losses such that both events occur. We first state
and prove two auxiliary lemmas, and then provide two more fundamental lemmas which together
give us the required result.
Lemma 3. Let Y be a random variable in [−b, b] (where b > 0), and E[Y ] ≥ c for some c ∈ [0, b/2].
Then we have

P (Y ≥ c/2) ≥ c

2b− c
≥ c

2b
.

Proof.

c ≤ E[Y ] = P(Y ≥ c/2)E[Y | Y ≥ c/2] + P(Y < c/2)E[Y | Y < c/2]

≤ P(Y ≥ c/2)b+
(
1− P(Y ≥ c/2)

)
c/2

Solving for P(Y ≥ c/2) gives the desired result.

Lemma 4. Let ξ1, ξ2, . . . be an infinite sequence of independent standard Gaussian random vari-
ables. Then for any δ ∈ (0, 1)

P
(
∃t : |ξt| ≥

√
3 log(2t/δ)

)
≤ δ.
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Proof. By a standard Gaussian tail bound, we have that P(|ξt| > x) ≤ exp(−x2/2) for any x ≥ 0.
This implies that

P(|ξt| ≥
√

3 log(2t/δ)) ≤
(
δ

2t

)3/2

.

By a union bound, we get that

P
(
∃t : |ξt| ≥

√
3 log(2t/δ)

)
≤
∞∑
t=1

(
δ

2t

)3/2

≤ δ3/2 < δ.

Lemma 5. For any (possibly randomized) player strategy, it holds that

P
(
Eplayer[RT ] ≥ 1

40
T 2/3

)
≥ 1

40
,

where P is over the adversary’s randomization, and Eplayer[RT ] is the player’s expected regret (over
the player’s randomization).

Proof. By Lemma 2, we already know that

E
[
Eplayer[RT ]

]
≥ 1

10
T 2/3, (15)

since if we have a T 2/3/10 lower bound on the regret for any deterministic player strategy, the same
holds for any randomized player strategy. Our approach is to apply Lemma 3 in order to convert this
into a probability lower bound as in the lemma statement. However, we cannot apply Lemma 3 as-is,
since Eplayer[RT ] can be as large as Ω(T ), and the resulting bound is too weak. Instead, we show
that there exists a different player strategy, with expected regret Ep̃layer[RT ], such that |Ep̃layer[RT ]|
is always at most 2T 2/3 and

Ep̃layer[RT ] ≤ 2 Eplayer[RT ] (16)

for any realization of the adversary’s random strategy. Also, analogous to Eq. (15), we have
E[Ep̃layer[RT ]] ≥ 1

10T
2/3 by Lemma 2. Therefore, using Eq. (16) and Lemma 3, we get that

P
(
Eplayer[RT ] ≥ 1

40
T 2/3

)
≥ P

(
Ep̃layer[RT ] ≥ 1

20
T 2/3

)
≥ 1

40

as required.

The new player strategy we consider depends on the horizon T , and is very simple: It is identical to
the original player strategy, but whenever the number of action switches reaches bT 2/3c, the player
“freezes” in its current action, and keeps playing the same action till T rounds are elapsed. Clearly,
the number of switches with this strategy can never be more than T 2/3, and since the regret in terms
of the loss `t at each round is either 0 or T−1/3, we get that the total regret RT can never be more
than T 2/3 + T ∗ T−1/3 = 2T 2/3.

To prove Eq. (16), we consider some instantiation of the adversary’s random strategy, and note
that for any realization of the player’s random coin tosses, the regret can only differ between
the two strategies if ST (the total number of switches) is at least bT 2/3c. Therefore, we have
Pplayer

(
ST < bT 2/3c

)
= Pp̃layer

(
ST < bT 2/3c

)
, Pplayer

(
ST ≥ bT 2/3c

)
= Pp̃layer

(
ST ≥ bT 2/3c

)
and Eplayer[RT |ST < bT 2/3c] = Ep̃layer[RT |ST < bT 2/3c]. Also, we recall that RT ≥ 0 with the
adversary strategy that we consider (since one action is always worse than the other action at all
rounds). Finally, we note that if ST ≥ bT 2/3c, then the regret for both strategies is at least bT 2/3c
(since with the adversary strategy that we consider, the number of switches is a lower bound on the

14



regret). Using these observations, we have

Ep̃layer[RT ]

= Pp̃layer(ST < bT
2/3c)Ep̃layer[RT |ST < bT

2/3c] + Pp̃layer(ST ≥ bT
2/3c)Ep̃layer[RT |ST ≥ bT

2/3c]

≤ Pp̃layer(ST < bT
2/3c)Ep̃layer[RT |ST < bT

2/3c] + Pp̃layer(ST ≥ bT
2/3c)2T 2/3

= Pplayer(ST < bT 2/3c)Eplayer[RT |ST < bT 2/3c] + Pplayer(ST ≥ bT 2/3c)2T 2/3

≤ 2
(
Pplayer(ST < bT 2/3c)Eplayer[RT |ST < bT 2/3c] + Pplayer(ST ≥ bT 2/3c)T 2/3

)
≤ 2

(
Pplayer(ST < bT 2/3c)Eplayer[RT |ST < bT 2/3c] + Pplayer(ST ≥ bT 2/3c)Eplayer[RT |ST ≥ bT 2/3c]

)
= 2 Eplayer[RT ],

where in the second-to-last step we used the fact that if ST ≥ bT 2/3c, then the regret is at least
bT 2/3c, plus we must have picked the worst action (worst by T−1/3 than the best action) at least
Ω(T 2/3) times, hence the total regret is certainly at least T 2/3.

Finally, we use Lemma 4 with δ = 1/80, to get that with probability at least 1 − 1/80, the drift
factor Dt of the adversarial strategy is at most

√
3 log(160t) ≤

√
3 log(t) + 16 for all t. Moreover,

Lemma 5 tells us that Eplayer[RT ] is at least 1
40T

2/3 with probability at least 1/40. This implies
that the intersection of the two events is non-empty, and there exists some deterministic adversarial
strategy, such that the drift Dt ≤

√
3 log(t) + 16 for all t, and the expected regret is at least 1

40T
2/3

as required.

C Proof of Thm. 2

Thm. 1 guarantees that given any player’s strategy, there is some deterministic adversary strategy
with a lower bound on the regret. However, as part of proving Thm. 1, we actually showed that there
exists some randomized adversary strategy {f̂t}Tt=1 with memory size 1, such that for any (possibly
randomized) player strategy x1:t,

E

[
T∑
t=1

f̂t(Xt−1, Xt)−min
x∈A

T∑
t=1

f̂t(x, x)

]
≥ 1

10
T 2/3 (17)

(see Lemma 2). We now use this strategy to define a randomized adversary strategy for our setting
(with memory size 2), for a game of T + 1 rounds. We let f1(x1) = 0 for any x1, f2(x1, x2) =

f̂1(x1), and for every t = 3 . . . T + 1,

ft(xt−2, xt−1, xt) = f̂t−1(xt−2, xt−1) . (18)

Now, suppose we had some (possibly randomized) player strategy X1 . . . XT+1, so that in expecta-
tion over the player and adversary strategies, we have

E

[
T+1∑
t=1

ft(Xt−2, Xt−1, Xt)−min
x∈A

T+1∑
t=1

ft(x, x, x)

]
<

1

10
T 2/3.

In particular, since f1 is always 0, it would imply that

E

[
T+1∑
t=2

ft(Xt−2, Xt−1, Xt)−min
x∈A

T+1∑
t=2

ft(x, x, x)

]
<

1

10
T 2/3 .

By Eq. (18), this implies

E

[
T∑
t=1

f̂t(Xt−1, Xt)−min
x∈A

T∑
t=1

f̂t(x, x)

]
<

1

10
T 2/3 .

Thus, if we could implement the player strategy X1 . . . XT in the bandits-with-switching-costs set-
ting, it will contradict Eq. (17). To see that this indeed can happen, note that each Xt is a (possibly
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randomized) function of X1:t−1 as well as {fτ (Xτ−2, Xτ−1, Xτ )}t−1τ=1. But again, due to Eq. (18)
and the fact that f1 is always 0, Xt can in fact be defined using X1:t−1 and{

fτ (Xτ−2, Xτ−1, Xτ )
}t−1
τ=2

=
{
f̂τ−1(Xτ−2, Xτ−1)

}t−1
τ=2

.

The right hand side is an observable quantity in the bandit setting: In each round t, we know what
are the set of losses {f̂τ−1(Xτ−2, Xτ−1)}t−1τ=2 that we obtained. Thus, we can simulate the strategy
x1:t in the bandit-with-switching-costs setting, and get an expected regret smaller than 1

10T
2/3,

contradicting Eq. (17). Thus, the expected regret (for a game of T + 1 rounds) must be at least
1
10T

2/3. Substituting T instead of T + 1, we get that the expected regret for a game with T rounds
is at least 1

10 (T − 1)2/3.

The regret bound we just now obtained is in expectation over the randomized adversary strategy,
and holds for any player’s strategy. We now use the same line of argument as in the last part of
Thm. 1’s proof, to show that for any (possibly randomized) player’s strategy, there exists some
deterministic adversary strategy, with a similar expected regret bound, and with losses of bounded
drift. Specifically, a result completely analogous to Lemma 5 implies that

P
(
Eplayer[RT ] ≥ 1

40
(T − 1)2/3

)
≥ 1

40

(
T − 1

T

)2/3

,

which is at least 1/80 for any T > 1 (if T = 1 the bound in the theorem is trivial from the non-
negativity of RT for the adversary strategy that we consider). Moreover, using Eq. (4) as in the
proof of Thm. 1, the probability of the loss drift being at most

√
3 log(320t) ≤

√
3 log(t) + 18 is

at least 1− 1/160. Thus, the intersection of the two events is not empty, and this implies that there
exists some deterministic adversary strategy causing expected regret ≥ 1

40 (T − 1)2/3, and loss drift
at most

√
3 log(t) + 18 for all t.

D Proofs of Upper Bounds

Proof of Thm. 3. Each loss functions equals ft(x1:t) = `(xt) + I{xt 6=xt−1}, where `t is an oblivious
loss function. Since the range of ft is contained in an interval of size C, the range of `t must be
contained in an interval of size C − 1. In other words,

∀x ∈ A `t(x)−min
y
`t(y) ≤ C − 1 .

Therefore, by definition, the range of `′t is contained in the interval [0, 1], and the analysis of the
FLL algorithm holds. Namely, if X1, X2, . . . is the sequence of actions chosen by FLL, then, for
any T

E

[
T∑
t=1

`′t(Xt)

]
−min
x∈A

T∑
t=1

`′t(x) = O(
√
T ) , (19)

and

E

[
T∑
t=1

I{Xt 6=Xt−1}

]
= O(

√
T ) . (20)

Plugging the definition of `′t into Eq. (19) and rearranging terms, we get

E

[
T∑
t=1

`t(Xt)

]
−min
x∈A

`t(x) = (C − 1)O(
√
T ) .

Summing the above with Eq. (20) gives

E

[
T∑
t=1

ft(X1:t)

]
−min
x∈A

ft(x . . . x) = O(C
√
T ) .
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Proof of Thm. 4. Recall that f ′t(x1:t) = 1
2(C+D) (`t(xt)− `t−1(xt−1)) + 1

2 , and note that our as-
sumptions imply that

|`t(xt)− `t−1(xt−1)| = |`t(xt)− `t−1(xt) + `t−1(xt)− `t−1(xt−1)|
≤ |`t(xt)− `t−1(xt)|+ |`t−1(xt)− `t−1(xt−1)|
≤ D + C .

Therefore, f ′t(x1:t) is always bounded in [0, 1]. Moreover, the action x which minimizes∑T
t=1 f

′
t(X1:t−1, x) does not depend on the player’s actions (only on

∑T
t=1 `t(x)). Letting x∗

denote such an action, the standard analysis for Exp3 implies that

E

[
T∑
t=1

f ′t(X1:t)−min
x∈A

T∑
t=1

f ′t(X1:t−1, x)

]
= E

[
T∑
t=1

f ′t(X1:t)−
T∑
t=1

f ′t(X1:t−1, x
∗)

]
= O(

√
T ),

where X1:T is the sequence of actions chosen by Exp3. Using the definition if f ′t , the left hand side
above can be rewritten as

1

2(C +D)
E

[
T∑
t=1

(
`t(Xt)− `t−1(Xt−1)

)
−min
x∈A

T∑
t=1

(
`t(x)− `t−1(Xt−1)

)]

=
1

2(C +D)
E

[
T∑
t=1

`t(Xt)

]
−min
x∈A

T∑
t=1

`t(x) .

Therefore,

E[RT ] = E

[
T∑
t=1

`t(Xt)

]
−min
x∈A

T∑
t=1

`t(x) = 2(C +D)O(
√
T ) .

Using the assumption that Dt = O
(√

log(T )
)
, we conclude that E[RT ] = Õ(C

√
T ).

Proof of Thm. 5. First, note that, due to the bounded range and drift assumptions, f̂t ∈ [0, 1]. Also
note that

ft(xt−m:t)− ft(x . . . x) = 2
(
C + (m+ 1)D

)(
f̂t(xt−m:t)− f̂t(x . . . x)

)
.

As previously mentioned, we divide the T rounds into J consecutive epochs of the same length
T/J , where T/J ≥ 2K(m + 1), plus an additional final epoch of length at most T/J . We let tj
denote the index of the first round in the j-th epoch. We run a mini-batched version of the Hedge
algorithm [11] over the epochs: at the beginning of each epoch j, Hedge draws an action Xj ∈ A
which is played consistently throughout the epoch. Now assume that at the end of each epoch j, loss
estimates gj(x) ∈ [0, 1] for each action x are available such that

E
[
gj(x)

]
=

1

T/J − 2m− 1

tj+1−1∑
t=tj+2m+1

f̂t(x . . . x)

where the randomness used to compute each gj is independent of that used by Hedge to draw Xj .
At the end of epoch j, we feed loss estimates gj(x) for each x ∈ A to Hedge. The resulting regret
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can be bounded as follows,
T∑
t=1

E
[
ft(Xt−m:t)− ft(x . . . x)

]

≤
J∑
j=1

tj+1−1∑
t=tj

E
[
ft(Xt−m:t)− ft(x . . . x)

]
+
CT

J

= 2
(
C + (m+ 1)D

) J∑
j=1

tj+2m∑
t=tj

E
[
f̂t(Xt−m:t)− f̂t(x . . . x)

]

+ 2
(
C + (m+ 1)D

) J∑
j=1

tj+1−1∑
t=tj+2m+1

E
[
f̂t(Xj . . . Xj)− f̂t(x . . . x)

]
+
CT

J

≤ 2
(
C + (m+ 1)D

)
(2m+ 1)J

+ 2
(
C + (m+ 1)D

)T
J
E

 J∑
j=1

E
[
gj(Xj)− gj(x)

∣∣∣Xj

]+
CT

J

= 2
(
C + (m+ 1)D

)
(2m+ 1)J

+ 2
(
C + (m+ 1)D

)T
J
E

 J∑
j=1

(
gj(Xj)− gj(x)

)+
CT

J

≤ 2
(
C + (m+ 1)D

)
(2m+ 1)J + 4

(
C + (m+ 1)D

)T
J

√
J lnK +

CT

J
.

In the last step we applied the known upper bound on the regret of Hedge with respect to losses
gj ∈ [0, 1], where K is the number of actions. This is valid if, in particular, losses gj are oblivious.
We now explain how to obtain oblivious estimates gj with the desired properties. At the beginning
of each epoch j, we use the independent randomization to draw K exploration steps {tx : x ∈ A}
from the set Tj = {tj , . . . , tj+1 − 2m − 2} with the property that these steps are well separated.
Namely, between any two tx and tx′ there are at least 2m + 1 consecutive free time steps in Tj .
During epoch j, when we arrive at step tx we freeze Hedge and play action x0 for m+ 1 time steps,
then we play action x for m+ 1 more time steps. We use the two observed losses ftx+m(x0 . . . x0)

and ftx+2m+1(x . . . x) to compute f̂tx+2m+1(x . . . x). Because the tx are well separated, the explo-
ration steps do not interfere with each other. Suppose now that we can draw these points such that
the marginal of each tx is uniform in Tj . Then

E
[
f̂tx+2m+1(x . . . x)

]
=

1

T/J − 2m− 1

tj+1−2m−2∑
t=tj

f̂t+2m+1(x . . . x)

=
1

T/J − 2m− 1

tj+1−1∑
t=tj+2m+1

f̂t(x . . . x) .

This shows that f̂tx+2m+1(x . . . x) is a valid estimate gj(x). Moreover, for each x ∈ A the quantity
f̂tx+2m+1(x . . . x) does not depend on Hedge’s action Xj for the current epoch j. It does not even
depend on Hedge’s past actions. Hence, Hedge is indeed run on a set of oblivious losses and the
standard regret bound applies.

The last thing to prove is that we can draw {tx : x ∈ A} ⊂ Tj such that the marginal of each tx
is uniform in Tj . Note that giving equal probability to all well separated configurations of {tx :
x ∈ A} does not work, because the times steps closer to the beginning and to the end of Tj appear
in more configurations (for example, check the case |Tj | = 8 and m = 1). This problem can be
fixed simply by arranging the points of Tj on a circle, so that the first point tj follows the last point
tj+1 − 2m − 2, and then enforcing well-separatedness on the circle. This makes the sample space
completely symmetric, excluding those configurations of exploration points that exploited border
effects.
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The additional regret due to the computation of the K exploration points is 2(m+ 1)CK per epoch.
The final regret, including these additional costs, is then bounded by

2
(
C + (m+ 1)D

)
(2m+ 1)J + 4

(
C + (m+ 1)D

)T
J

√
J lnK +

CT

J
+ 2(m+ 1)CKJ .

Choosing J of order T 2/3 concludes the proof.
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