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1 Technical Lemmas

Before proving the theoretical results in this paper, we first present following lemmas used in the
proof.

Lemma 1. There exists a constant c that only depends on p and d, such that for all v > 0 and b
signals {x;}_,, the following holds with high probability:
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where € = cay/dlog® b/b.

Lemma 2 (Operator-Bernstein inequality). Let {z;}™ | be a subset of Z = {z;}t_,, which is formed
by randomly sampling without replacement from Z, as in Algorithm 1. Then the following statement

holds
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with probability larger than 1 — 2 exp(—62 /4m).

2 Proof of Lemma 3

Lemma 3. [f there exists € such that
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and the observations z; are normalized by lo-norm, then for any wi,--- ,wWq € S, the following
holds:
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where H(w) = ijl HWJTAHQ and s is the signal noise ratio.



Proof. Suppose the noise magnitude is ||n;||2 = 1 with out loss of generality. And thus the signal
magnitude is ||x;||2 = s. Then we have:
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Here the inequality (a) is from the triangle inequality. The inequality (b) is from that
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for the first term and the inequality (>_, a;b;)* < (3, a?)(>", b7) for the second term. And the
inequality (c) is from the definition of H (w) and applying Lemma

Similarly, we have
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Combining the above two results, we complete the proof. [




3 Proof of Lemma 4

Lemma 4. [f there exists € such that

sup
weSq

t
1
72wl -

i=1

and the observations {z}}1, are sampled as in Algorithm 1, then for any w1,--- ,Wq € S, with
large probability, the followmg holds:
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where H(w) £ ZJ 1w
vations in each batch.

, S is the signal noise ratio and m is the number of sampled obser-

Proof. According to Lemma 2, we have
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Next we will show that the method of sampling without replacement given in Algorithm 1 provides
an unbiased estimation of 13! 57 _1(w]'z;)?. To see this, we define the random variables

=|wlz;?and Y; = X; / bX; which is sampled from X; with probability p;, = X; and re-scaled
by bX; as in Algorithm 1. Then
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Namely,
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Thus, according to Lemma 3, we have
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with probability larger than 1 — 2 exp(—d2/4m). Therefore,
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Then applying Lemma 2] completes the proof. O



4 Proof of Lemma 5

Lemma 5. For the current obtained principal components {Wg-t*l) 14 =1, the number of the accepted
authentic samples | Z;| and outliers |Oy| satisfy
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with probability at least 1 — e=29°% Here § > 0 is a small constant, \ is the outlier fraction and b
is the size of the small batch.

Proof. According to the Algorithm 1, the probability of accepting an authentic sample is
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Since there are in total (1 — \)b authentic samples, we have
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By applying the Chernoff bound, we have
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Thus,
(1-M)b d

|12 1 -nT ? —25%b

i=1 j=1
Similarly, the expectation of the number of accepted outliers is
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And applying Chernoff bound again, we obtain
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5 Proof of Lemma 6

Lemma 6. For an outlier o;, an arbitrary 0rth0g0nal basis {w; }zi 1 and the groundtruth basis
{W;}2_, which satisfy that Z L Wio; > Z 1w o; and Z ij > Z;l:l W?oi, the
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value szj | Wj 0; is a monotonically decreasing function of Z] 1 W] W



Proof. For the basis {W }?:1 spanning the groundtruth subspace, we can always rotate these basis
and align them to the estimated basis {w; };’/zl to make sure that o;, w; and W lie within the same

plane. We also denote the aligned basis as {Wj};-i:l without causing confusion. For the single basis
pair, w; and W, it can be verified that

wlo; = (Who) (Wiw;) + /1 - (Wlo)? /1 — (Whw,)?,

when the basis Wj satisfies the stated conditions. Thus we have
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is a monotonically decreasing function w.r.t. Z =1 W T'W, be seeing that the increase of any |wJToZ-|
will decrease value of the function. O

6 Proof of Theorem

Theorem 1 (Noisy Case Performance). There exist constants cy,ch which depend on the signal
noise ratio s and €1,e5 > 0 which approximate zero when s — oo or b — oo, such that if the

outliers satisfies that Z?:l |W;‘-Foi|2 < T, the initial solution {W(O)}j-l:1 in Algorithm 1 satisfies:
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then the performance of the solution from Algorithm 1 will be improved in each iteration, and even-
tually converges to:
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Here €; and ey decay as O(dzb~2s™Y), and € decays as O(d2b™2). And ¢, = (s + 1)2/(s —
1)?%,¢5 = (1+1/s)%

Proof of Theorem([I] The sample covariance matrix at trial ¢ is calculated as:

Ct = Z Z,L‘ZZT—F Z 010?.

z; €2t 0,€0;
And we have,
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Thus for the PCA solution {W;t)}?zl on the current accepted data set )y = Z; U Oy, we have
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where the inequality is from the fact that {w§-t) G=1

matrix C;.

are the leading eigenvectors of the covariance
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Note that all the data points are normalized by their £2-norm, therefore Zj:l <w§t) Oi) <1
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Thus we have Z?Zl Y o,c0, wét) ofoiwg-t) < |Oy]. Substituting it to (I, we can obtain
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According to the definition of outliers, the outliers variance along the true PC directions is upper
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bounded, i.e., Z?Zl (ijoi) < T',. Thus, we have
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According to Lemma we have followings hold with large probability 1 — 2 exp(—462/4m),
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Here m = |ZW| H® = 0 (wgt), - ,wg)) and we utilize the fact that H(wy,...,Wg) = 1.

Substitute (3) and (@) to (2)), we can obtain that
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According to Lemmal[5} we have, with a large probability,
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Here, ¢} = (s — 1)?/(s + 1)%,¢y = (1 + 1/s)*.
In obtaining the above inequality (5), we utilize the fact that H -1 <1,

Based on the bound provided in @ the result of Theorem 1 can be proved by induction. For the PC

obtained from the first batch, {w )} 4_1, we have that
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When the initial solution {w(o) }d ; satisfies the following conditions:
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and the inequalities (a) and (b) are from the definitions of ¢; and ¢}, we can verify that
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Since we are performing PCA on the authentic samples and outliers together, the obtained PCs

{w _, will span a subspace lying between a subset of the outliers and groundtruth subspace.
For these outliers, the conditions stated in Lemma [6] are satisfied. Thus according to Lemmal6] we

have
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Similarly, suppose for the solution in (¢ — 1)-th trial, we have Z EJ (W5 0;)? <
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And we can verify that when the initial solution satisfies the conditions (6} and (7), the performance
of the new solution will be improved, namely
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Finally, by letting
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we can solve out that
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Namely, the final performance will converge as above. O
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7 Simulations

Here we investigate the performance of proposed online RPCA under the cases where d = 3 and
d = 5. The results are shown in the Figure [T] and Figure [2] respectively. We can see that in the
cases where d > 1, the final performance will decrease a little bit. But along with more samples
being revealed, the performance of online RPCA is steadily improved. This demonstrates the ability
of our proposed online RPCA method to recover the underlying subspace even when the intrinsic
dimension is large.
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Figure 1: Performance comparison of online RPCA (blue line) with online PCA (red line). Here
s =2,p=100,7T = 10,000, d = 3. The outliers are distributed on a single direction.
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Figure 2: Performance comparison of online RPCA (blue line) with online PCA (red line). Here
s =2,p=100,7T = 10,000, d = 5. The outliers are distributed on a single direction.
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