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1 Technical Lemmas

Before proving the theoretical results in this paper, we first present following lemmas used in the
proof.
Lemma 1. There exists a constant c that only depends on µ and d, such that for all γ > 0 and b
signals {xi}bi=1, the following holds with high probability:

sup
w∈Sd

∣∣∣∣∣1b
b∑
i=1

(wTxi)
2 − 1

∣∣∣∣∣ ≤ ε,
where ε = cα

√
d log3 b/b.

Lemma 2 (Operator-Bernstein inequality). Let {z′i}mi=1 be a subset ofZ = {zi}ti=1, which is formed
by randomly sampling without replacement from Z , as in Algorithm 1. Then the following statement
holds ∣∣∣∣∣

m∑
i=1

wT z′i − E

(
m∑
i=1

wT z′i

)∣∣∣∣∣ ≤ δ
with probability larger than 1− 2 exp(−δ2/4m).

2 Proof of Lemma 3

Lemma 3. If there exists ε such that

sup
w∈Sd

∣∣∣∣∣1t
t∑
i=1

|wTxi|2 − 1

∣∣∣∣∣ ≤ ε,
and the observations zi are normalized by `2-norm, then for any w1, · · · ,wd ∈ Sp, the following
holds:

(1− ε)H(w)− 2
√

(1 + ε)H(w)/s

(1/s+ 1)2
≤ 1

t

t∑
i=1

d∑
j=1

(wT
j zi)

2 ≤
(1 + ε)H(w) + 2

√
(1 + ε)H(w)/s+ 1/s2

(1/s− 1)2
,

where H(w) =
∑d
j=1 ‖wT

j A‖2 and s is the signal noise ratio.
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Proof. Suppose the noise magnitude is ‖ni‖2 = 1 with out loss of generality. And thus the signal
magnitude is ‖xi‖2 = s. Then we have:

1

t

t∑
i=1

d∑
j=1

|wT
j zi|2

‖zi‖22

=
1

t

t∑
i=1

d∑
j=1

|wT
j Axi + wT

j ni|2

‖Axi + ni‖22

(a)

≤ 1

t

t∑
i=1

d∑
j=1

|wT
j Axi + wT

j ni|2

(‖Axi‖2 − ‖ni‖2)2

=
1

t

t∑
i=1

d∑
j=1

|wT
j Axi + wT

j ni|2

(s− 1)2

=
1

(s− 1)2
1

t


t∑
i=1

d∑
j=1

(wT
j Axi)

2 + 2

t∑
i=1

d∑
j=1

(wT
j Axi)(w

T
j ni) +

t∑
i=1

d∑
j=1

(wT
j ni)

2


(b)

≤ 1

(s− 1)2

d∑
j=1

‖wT
j A‖22 sup

v∈Sd

1

t

t∑
i=1

|vTxi|2 + 2

√√√√1

t

t∑
i=1

(wT
j Axi)

2

√√√√1

t

t∑
i=1

(wT
j ni)

2 +
1

t

t∑
i=1

(wT
j ni)

2


(c)

≤ (1 + ε)‖wTA‖2s2 + 2‖wTA‖s
√

1 + ε+ 1

(s− 1)2
.

Here the inequality (a) is from the triangle inequality. The inequality (b) is from that

t∑
i=1

|wT
j Axi|2 = wT

j A

(
t∑
i=1

xix
T
i

)
ATwj = ‖wT

j A‖22

{
wT
j A

‖wT
j A‖2

(
t∑
i=1

xix
T
i

)
ATwj

‖wT
j A‖2

}

≤ ‖wT
j A‖22 sup

v∈Sd

1

t

t∑
i=1

|vTxi|2,

for the first term and the inequality (
∑
i aibi)

2 ≤ (
∑
i a

2
i )(
∑
i b

2
i ) for the second term. And the

inequality (c) is from the definition of H(w) and applying Lemma 1.

Similarly, we have

1

t

t∑
i=1

d∑
j=1

|wT
j zi|2

‖zi‖22

=
1

t

t∑
i=1

d∑
j=1

|wT
j Axi + wT

j ni|2

‖Axi + ni‖22

≥ 1

t

t∑
i=1

d∑
j=1

|wT
j Axi|2 − 2|wT

j Axi||wT
j ni|

‖Axi + ni‖22

≥ 1

t

t∑
i=1

d∑
j=1

|wT
j Axi|2 − 2|wT

j Axi||wT
j ni|

(‖Axi‖2 + ‖ni‖2)2

=
1

t

t∑
i=1

d∑
j=1

(wT
j Axi)

2 − 2|wT
j Axi||wT

j ni|
(s+ 1)2

≥
(1− ε)H(w)s2 − 2s

√
(1 + ε)H(w)

(s+ 1)2
.

Combining the above two results, we complete the proof.
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3 Proof of Lemma 4

Lemma 4. If there exists ε such that

sup
w∈Sd

∣∣∣∣∣1t
t∑
i=1

|wTxi|2 − 1

∣∣∣∣∣ ≤ ε,
and the observations {z′i}mi=1 are sampled as in Algorithm 1, then for any w1, · · · ,wd ∈ Sp, with
large probability, the following holds:

(1− ε)H(w)− 2
√

(1 + ε)H(w)/s

(1/s+ 1)2b/m
− δ

≤ 1

t

t∑
i=1

d∑
j=1

(wT
j z
′
i)

2 ≤
(1 + ε)H(w) + 2

√
(1 + ε)H(w)/s+ 1/s2

(1/s− 1)2b/m
+ δ,

where H(w) ,
∑d
j=1 ‖wT

j A‖2, s is the signal noise ratio and m is the number of sampled obser-
vations in each batch.

Proof. According to Lemma 2, we have

(1− ε)H(w)− 2
√

(1 + ε)H(w)/s

(1/s+ 1)2
≤ 1

t

t∑
i=1

d∑
j=1

(wT
j zi)

2 ≤
(1 + ε)H(w) + 2

√
(1 + ε)H(w)/s+ 1/s2

(1/s− 1)2
.

Next we will show that the method of sampling without replacement given in Algorithm 1 provides
an unbiased estimation of 1

t

∑t
i=1

∑d
j=1(wT

j zi)
2. To see this, we define the random variables

Xi = |wT zi|2 and Yi = Xi/bXi which is sampled from Xi with probability pi = Xi and re-scaled
by bXi as in Algorithm 1. Then

E[Yi] =

t∑
i=1

piYi =

t∑
i=1

Xi
Xi

bXi
=

t∑
i=1

Xi

b
.

Thus,

E

[
m∑
i=1

Yi

]
=

m∑
i=1

E[Yi] =

m∑
i=1

t∑
i=1

Xi

b
=
m

b

t∑
i=1

Xi.

Namely,

E

[
m∑
i=1

∣∣wT z′i
∣∣2] =

m

b

t∑
i=1

∣∣wT zi
∣∣2 .

Thus, according to Lemma 3, we have∣∣∣∣∣
m∑
i=1

∣∣wT z′i
∣∣2 − m

b

t∑
i=1

∣∣wT zi
∣∣2∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

∣∣wT z′i
∣∣2 − E

[
m∑
i=1

∣∣wT z′i
∣∣2]∣∣∣∣∣ < δ,

with probability larger than 1− 2 exp(−δ2/4m). Therefore,

m

b

t∑
i=1

∣∣wT zi
∣∣2 − δ ≤ m∑

i=1

∣∣wT z′i
∣∣2 ≤ m

b

t∑
i=1

∣∣wT zi
∣∣2 + δ.

Then applying Lemma 2 completes the proof.

3



4 Proof of Lemma 5

Lemma 5. For the current obtained principal components {w(t−1)
j }dj=1, the number of the accepted

authentic samples |Zt| and outliers |Ot| satisfy∣∣∣∣∣∣ |Zt|b − 1

b

(1−λ)b∑
i=1

d∑
j=1

(w
(t−1)
j

T
zi)

2

∣∣∣∣∣∣ ≤ δ
and ∣∣∣∣∣∣ |Ot|b − 1

b

λb∑
i=1

d∑
j=1

(w
(t−1)
j

T
oi)

2

∣∣∣∣∣∣ ≤ δ
with probability at least 1 − e−2δ2b. Here δ > 0 is a small constant, λ is the outlier fraction and b
is the size of the small batch.

Proof. According to the Algorithm 1, the probability of accepting an authentic sample is

Pr (zi is accepted) =

d∑
j=1

(
w

(t−1)
j

T
zi

)2

.

Since there are in total (1− λ)b authentic samples, we have

E|Zt| =
(1−λ)b∑
i=1

d∑
j=1

(
w

(t−1)
j

T
zi

)2

.

By applying the Chernoff bound, we have

Pr {||Zt| − E|Zt|| < δb} ≥ 1− e−2δ
2b.

Thus,

Pr


∣∣∣∣∣∣ |Zt|b − 1

b

(1−λ)b∑
i=1

d∑
j=1

(
w

(t−1)
j

T
zi

)2
∣∣∣∣∣∣ ≤ δ

 ≥ 1− e−2δ
2b.

Similarly, the expectation of the number of accepted outliers is

E|Ot| =
λb∑
i=1

d∑
j=1

(
w

(t−1)
j

T
oi

)2

.

And applying Chernoff bound again, we obtain

Pr


∣∣∣∣∣∣ |Ot|b − 1

b

λb∑
i=1

d∑
j=1

(
w

(t−1)
j

T
oi

)2
∣∣∣∣∣∣ < δ

 ≥ 1− e−2δ
2b.

5 Proof of Lemma 6

Lemma 6. For an outlier oi, an arbitrary orthogonal basis {wj}dj=1 and the groundtruth basis
{wj}dj=1 which satisfy that

∑d
j=1 w

T
j oi ≥

∑d
j=1 w

T
j oi and

∑d
j=1 w

T
j wj ≥

∑d
j=1 w

T
j oi, the

value of
∑d
j=1 w

T
j oi is a monotonically decreasing function of

∑d
j=1 w

T
j wj .
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Proof. For the basis {wj}dj=1 spanning the groundtruth subspace, we can always rotate these basis
and align them to the estimated basis {wj}dj=1 to make sure that oi,wj and wj lie within the same
plane. We also denote the aligned basis as {wj}dj=1 without causing confusion. For the single basis
pair, wj and wj , it can be verified that

wT
j oi = (wT

j oi)(w
T
j wj) +

√
1− (wT

j oi)
2

√
1− (wT

j wj)2,

when the basis wj satisfies the stated conditions. Thus we have
d∑
j=1

wT
j oi =

d∑
j=1

(wT
j oi)(w

T
j wj) +

d∑
j=1

√
1− (wT

j oi)
2

√
1− (wT

j wj)2.

It is easy to verify that when
∑d
j=1 w

T
j wj ≥

∑d
j=1 w

T
j oi, the function

f(wT
j wj) =

d∑
j=1

(wT
j oi)(w

T
j wj) +

d∑
j=1

√
1− (wT

j oi)
2

√
1− (wT

j wj)2

is a monotonically decreasing function w.r.t.
∑d
j=1 w

T
j wj be seeing that the increase of any |wT

j oi|
will decrease value of the function.

6 Proof of Theorem 1

Theorem 1 (Noisy Case Performance). There exist constants c′1, c
′
2 which depend on the signal

noise ratio s and ε1, ε2 > 0 which approximate zero when s → ∞ or b → ∞, such that if the
outliers satisfies that

∑d
j=1 |w

T
j oi|2 ≤ Γo, the initial solution {w(0)}dj=1 in Algorithm 1 satisfies:

λb∑
i=1

d∑
j=1

∣∣∣∣w(0)
j

T
oi

∣∣∣∣2 ≤ (1− λ)b(1− ε2)

c′2(1− Γo)

(
1

4
(c′1(1− ε) + ε1)2 − ε2

)
,

and

H(w(0)) ≥ 1

2
(c′1(1−2ε)+ε1)−

√√√√ (c′1(1− ε) + ε1)2 − 4ε2
4

−
c′2
∑λb
i=1

∑d
j=1(w

(0)
j

T
oi)2(1− Γo)

(1− λ)b(1− ε2)
,

then the performance of the solution from Algorithm 1 will be improved in each iteration, and even-
tually converges to:

lim
t→∞

Ht ≥
1

2
(c′1(1−2ε)+ε1)+

√√√√ (c′1(1− 2ε) + ε1)2 − 4ε2
4

−
c′2
∑λb
i=1

∑d
j=1(w

(0)
j

T
oi)2(1− Γo)

(1− λ)b(1− ε2)
.

Here ε1 and ε2 decay as Õ(d
1
2 b−

1
2 s−1), and ε decays as Õ(d

1
2 b−

1
2 ). And c′1 = (s + 1)2/(s −

1)2, c′2 = (1 + 1/s)4.

Proof of Theorem 1. The sample covariance matrix at trial t is calculated as:

Ct =
∑

zi∈Zt

ziz
T
i +

∑
oi∈Ot

oio
T
i .

And we have,
d∑
j=1

wT
j Ctwj =

d∑
j=1

∑
zi∈Zt

(wT
j zi)

2 +

d∑
j=1

∑
oi∈Ot

(wT
j oi)

2.

Thus for the PCA solution {w(t)
j }dj=1 on the current accepted data set Yt = Zt ∪ Ot, we have

d∑
j=1

∑
zi∈Zt

(
w

(t)
j

T
zi

)2

+

d∑
j=1

∑
oi∈Ot

(
w

(t)
j

T
oi

)2

≥
d∑
j=1

∑
zi∈Zt

(
wj

T zi
)2

+

d∑
j=1

∑
oi∈Ot

(
wj

Toi
)2
,

(1)
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where the inequality is from the fact that {w(t)
j }dj=1 are the leading eigenvectors of the covariance

matrix Ct.

Note that all the data points are normalized by their `2-norm, therefore
∑d
j=1

(
w

(t)
j

T
oi

)2

≤ 1.

Thus we have
∑d
j=1

∑
oi∈Ot

w
(t)
j

T
oTi oiw

(t)
j ≤ |Ot|. Substituting it to (1), we can obtain

d∑
j=1

∑
zi∈Zt

(
w

(t)
j

T
zi

)2

+ |Ot| ≥
d∑
j=1

∑
zi∈Zt

(
wj

T zi
)2

+

d∑
j=1

∑
oi∈Ot

(
wj

Toi
)2
.

According to the definition of outliers, the outliers variance along the true PC directions is upper
bounded, i.e.,

∑d
j=1

(
wj

Toi
)2 ≤ Γo. Thus, we have

1

|Zt|

d∑
j=1

∑
zi∈Zt

(
w

(t)
j

T
zi

)2

≥ 1

|Zt|

d∑
j=1

∑
zi∈Zt

(wT
j zi)

2 − |Ot|
|Zt|

(1− Γo). (2)

According to Lemma 4, we have followings hold with large probability 1− 2 exp(−δ2/4m),

1

|Zt|

d∑
j=1

∑
zi∈Zt

(
w

(t)
j

T
zi

)2

≤ (1 + ε)s2H(t) + 2s
√

(1 + ε)H(t) + 1

(s− 1)2b/m
+ δ, (3)

and
1

|Zt|

d∑
j=1

∑
zi∈Zt

(wT
j zi)

2 ≥
(1− ε)s2 − 2s

√
(1 + ε)

(s+ 1)2b/m
− δ. (4)

Here m = |Z(t)|, H(t) = H
(
w

(t)
1 , . . . ,w

(t)
d

)
and we utilize the fact that H(w1, . . . ,wd) = 1.

Substitute (3) and (4) to (2), we can obtain that

(1 + ε)H(t) + 2
√

(1 + ε)H(t)/s+ 1/s2

(1/s− 1)2
+ 2δ

b

|Z(t)|
≥

(1− ε)− 2
√

(1 + ε)/s

(1/s+ 1)2
− b|Ot|
|Zt|2

(1−Γo).

According to Lemma 5, we have, with a large probability,

|Ot|
|Zt|

=

∑d
j=1

∑λb
i=1

(
w

(t−1)
j

T
wo

)2

∑d
j=1

∑(1−λ)b
i=1

(
w

(t−1)
j

T
zi

)2 ≤
(1/s+ 1)2

∑d
j=1

∑λb
i=1

(
w

(t−1)
j

T
wo

)2

(1− λ)b
(

(1− ε)H(t) − 2
√

(1 + ε)H(t)/s
) ,

and
|Zt|
b
≥ (1− λ)

(
(1− ε)H(t) − 2

√
(1 + ε)H(t)/s

)
.

Here the inequality is from Lemma 3.

Thus,

H(t) ≥ c1 −
c2
∑d
j=1

∑λb
i=1

(
w

(t−1)
j

T
wo

)2

(1− Γo)

(1− λ)b((1− ε)H(t−1) − ε′)
− ε̄ (5)

where

c′1(1− 2ε) ≤ c1 =
(s− 1)2(1− ε)
(s+ 1)2(1 + ε)

≤ c′1(1− ε),

c2 =
(1 + 1/s)4

1 + ε
=

c′2
1 + ε

,

ε̄ =
4(s2 + 1)

(s− 1)2s
√

1 + ε
+

1

(1 + ε)s2
,

ε′ = 2
√

(1 + ε)c̄/s.
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Here, c′1 = (s− 1)2/(s+ 1)2, c′2 = (1 + 1/s)4.

In obtaining the above inequality (5), we utilize the fact that H(t−1) ≤ 1.

Based on the bound provided in (5), the result of Theorem 1 can be proved by induction. For the PC
obtained from the first batch, {w(1)

j }dj=1, we have that

H(1) ≥ c1 −
c2
∑d
j=1

∑λb
i=1

(
w(0)T

j oi

)2
(1− Γo)

(1− λ)b((1− ε)H(0) − ε′)
− ε̄.

When the initial solution {w(0)
j }dj=1 satisfies the following conditions:

λb∑
i=1

d∑
j=1

(
w

(0)
j

T
oi

)2

≤ (1− λ)b(1− ε)
c2(1− Γo)

(
1

4
(c1 − ε1)2 − ε2

)
(a)

≤ (1− λ)b(1− ε2)

c′2(1− Γo)

(
1

4
(c′1(1− ε) + ε1)2 − ε2

)
,

(6)
and

H(0) ≥ 1

2
(c1 − ε1)−

√√√√√1

4
(c1 − ε1)2 − ε2 −

c2
∑λb
i=1

∑d
j=1

(
w

(0)
j

T
oi

)2

(1− Γo)

(1− λ)b(1− ε)
, (7)

(b)

≥ 1

2
(c′1(1− 2ε) + ε1)−

√√√√ (c′1(1− ε) + ε1)2 − 4ε2
4

−
c′2
∑λb
i=1

∑d
j=1(w

(0)
j

T
oi)2(1− Γo)

(1− λ)b(1− ε2)

where

ε1 = ε̄− ε′

1− ε
, and ε2 =

ε′(c1 − ε̄)
1− ε

,

and the inequalities (a) and (b) are from the definitions of c1 and c′1, we can verify that

H(1) ≥ c′1(1− 2ε)−
c′2
∑d
j=1

∑λb
i=1

(
w

(0)
j

T
wo

)2

(1− Γo)

(1 + ε)(1− λ)b((1− ε)H0 − ε′)
− ε̄ ≥ H(0).

Since we are performing PCA on the authentic samples and outliers together, the obtained PCs
{w(0)

j }dj=1 will span a subspace lying between a subset of the outliers and groundtruth subspace.
For these outliers, the conditions stated in Lemma 6 are satisfied. Thus according to Lemma 6, we
have

λb∑
i=1

d∑
j=1

(
w

(1)
j

T
oi

)2

≤
λb∑
i=1

d∑
j=1

(
w

(0)
j

T
oi

)2

.

Similarly, suppose for the solution in (t − 1)-th trial, we have
∑λb
i=1

∑d
j=1(w

(t−1)
j

T
oi)

2 ≤∑λb
i=1

∑d
j=1(w

(0)
j

T
oi)

2. Thus,

H(t) ≥ c′1(1− 2ε)−
c′2
∑λb
i=1

∑d
j=1

(
w

(0)
j

T
oi

)2

(1− Γo)

(1 + ε)(1− λ)b((1− ε)H(t−1) − ε′)
− ε̄

And we can verify that when the initial solution satisfies the conditions (6) and (7), the performance
of the new solution will be improved, namely

H(t) ≥ H(t−1).

And thus
∑λb
i=1

∑d
j=1

(
w

(t−1)
j

T
oi

)2

keeps decreasing according to Lemma 6.

7



Finally, by letting

c′1(1− 2ε)−
c′2
∑λb
i=1

∑d
j=1

(
w

(0)
j

T
oi

)2

(1− Γo)

(1 + ε)(1− λ)b((1− ε)Ht−1 − ε′)
− ε̄ = H(t),

we can solve out that

H(t) =
1

2
(c′1(1−2ε)−ε1)+

√√√√√ (c′1(1− 2ε)− ε1)2

4
− ε2 −

c′2
∑λb
i=1

∑d
j=1

(
w

(0)
j

T
oi

)2

(1− Γo)

(1− λ)b(1− ε2)
.

Namely, the final performance will converge as above.

7 Simulations

Here we investigate the performance of proposed online RPCA under the cases where d = 3 and
d = 5. The results are shown in the Figure 1 and Figure 2 respectively. We can see that in the
cases where d > 1, the final performance will decrease a little bit. But along with more samples
being revealed, the performance of online RPCA is steadily improved. This demonstrates the ability
of our proposed online RPCA method to recover the underlying subspace even when the intrinsic
dimension is large.
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Figure 1: Performance comparison of online RPCA (blue line) with online PCA (red line). Here
s = 2, p = 100, T = 10, 000, d = 3. The outliers are distributed on a single direction.
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Figure 2: Performance comparison of online RPCA (blue line) with online PCA (red line). Here
s = 2, p = 100, T = 10, 000, d = 5. The outliers are distributed on a single direction.
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