
A Deep Architecture for Matching Short Texts

Zhengdong Lu
Noah’s Ark Lab

Huawei Technologies Co. Ltd.
Sha Tin, Hong Kong

Lu.Zhengdong@huawei.com

Hang Li
Noah’s Ark Lab

Huawei Technologies Co. Ltd.
Sha Tin, Hong Kong

HangLi.HL@huawei.com

Abstract

Many machine learning problems can be interpreted as learning for matching two
types of objects (e.g., images and captions, users and products, queries and doc-
uments, etc.). The matching level of two objects is usually measured as the inner
product in a certain feature space, while the modeling effort focuses on mapping of
objects from the original space to the feature space. This schema, although proven
successful on a range of matching tasks, is insufficient for capturing the rich struc-
ture in the matching process of more complicated objects. In this paper, we pro-
pose a new deep architecture to more effectively model the complicated matching
relations between two objects from heterogeneous domains. More specifically, we
apply this model to matching tasks in natural language, e.g., finding sensible re-
sponses for a tweet, or relevant answers to a given question. This new architecture
naturally combines the localness and hierarchy intrinsic to the natural language
problems, and therefore greatly improves upon the state-of-the-art models.

1 Introduction

Many machine learning problems can be interpreted as matching two objects, e.g., images and
captions in automatic captioning [11, 14], users and products in recommender systems, queries
and retrieved documents in information retrieval. It is different from the usual notion of similarity
since it is usually defined between objects from two different domains (e.g., texts and images), and
it is usually associated with a particular purpose. The degree of matching is typically modeled as an
inner-product of two representing feature vectors for objects x and y in a Hilbert spaceH,

match(x, y) =< ΦY(x),ΦX (y) >H (1)

while the modeling effort boils down to finding the mapping from the original inputs to the feature
vectors. Linear models of this direction include the Partial Least Square (PLS) [19, 20], Canonical
Correlation Analysis (CCA) [7], and their large margin variants [1]. In addition, there is also limited
effort on finding the nonlinear mappings for that [3, 18].

In this paper, we focus on a rather difficult task of matching a given short text and candidate re-
sponses. Examples include retrieving answers for a given question and automatically commenting
on a given tweet. This inner-product based schema, although proven effective on tasks like infor-
mation retrieval, are often incapable for modeling the matching between complicated objects. First,
representing structured objects like text as compact and meaningful vectors can be difficult; Second,
inner-product cannot sufficiently take into account the complicated interaction between components
within the objects, often in a rather nonlinear manner.

In this paper, we attack the problem of matching short texts from a brand new angle. Instead of
representing the text objects in each domain as semantically meaningful vectors, we directly model
object-object interactions with a deep architecture. This new architecture allows us to explicitly
capture the natural nonlinearity and the hierarchical structure in matching two structured objects.

1

2 Model Overview

Figure 1: Architecture for linear matching.

We start with the bilinear model. Assume we can
represent objects in domain X and Y with vectors
x ∈ RDx and y ∈ RDy . The bilinear matching
model decides the score for any pair (x,y) as

match(x,y) = x>Ay =

Dx∑
m=1

Dy∑
n=1

Anmxmyn, (2)

with a pre-determined A. From a different angle,
each element product xnym in the above sum can
be viewed as a micro and local decision about the
matching level of x and y. The outer-product matrix
M = xy> specifies the space of element-wise inter-
action between objects x and y. The final decision is

made considering all the local decisions, while in the bilinear case match(x,y) =
∑

nm AnmMnm,
it simply sums all the local decisions with a weight specified by A, as illustrated in Figure 1.

2.1 From Linear to Deep
This simple summarization strategy can be extended to a deep architecture to explore the nonlin-
earity and hierarchy in matching short texts. Unlike tasks like text classification, we need to work
on a pair of text objects to be matched, which we refer to as parallel texts, borrowed from machine
translation. This new architecture is mainly based on the following two intuitions:
Localness: there is a salient local structure in the semantic space of parallel text objects to be
matched, which can be roughly captured via the co-occurrence pattern of words across the objects.
This localness however should not prevent two “distant” components from correlating with each
other on a higher level, hence calls for the hierarchical characteristic of our model;
Hierarchy: the decision making for matching has different levels of abstraction. The local deci-
sions, capturing the interaction between semantically close words, will be combined later layer-by-
layer to form the final and global decision on matching.

2.2 Localness

“image patch” “text patch”

Figure 2: Image patches vs. parallel-text patches.

The localness of the text matching problem can
be best described using an analogy with the
patches in images, as illustrated in Figure 2.
Loosely speaking, a patch for parallel texts de-
fines the set of interacting pairs of words from
the two text objects. Like the coordinate of an
image patch, we can use (Ωx,p,Ωy,p) to specify
the range of the path, with Ωx,p and Ωy,p each
specifying a subset of terms in X and Y respec-
tively. Like the patches of images, the patches
defined here are meant to capture the segments
of rich inherent structure. But unlike the natu-
rally formed rectangular patches of images, the

patches defined here do not come with a pre-given spatial continuity. It is so since in texts, the
nearness of words are not naturally given as location of pixels in images, but instead needs to be
discovered from the co-occurrence patterns of the matched texts. As shown later in Section 3, we
actually do that with a method resembling bilingual topic modeling, which nicely captures the co-
occurrence of the words within-domain and cross-domain simultaneously. The basic intuitions here
are, 1) when the words co-occur frequently across the domains (e.g., fever—antibiotics), they
are likely to have strong interaction in determining the matching score, and 2) when the words co-
occur frequently in the same domain (e.g., {Hawaii,vacation}), they are likely to collaborate in
making the matching decision. For example, modeling the matching between the word “Hawaii”
in question (likely to be a travel-related question) and the word “RAM” in answer (likely an answer
to a computer-related question) is probably useless, judging from their co-occurrence pattern in
Question-Answer pairs. In other words, our architecture models only “local” pairwise relations on

2

a low level with patches, while describing the interaction between semantically distant terms on
higher levels in the hierarchy.

2.3 Hierarchy

Once the local decisions on patches are made (most of them are NULL for a particular short
text pair), they will be sent to the next layer, where the lower-level decisions are further com-
bined to form more composite decisions, which in turn will be sent to still higher levels. This
process runs until it reaches the final decision. Figure 3 gives an illustrative example on hier-
archical decision making. As it shows, the local decision on patch “SIGHTSEEING IN PARIS”
and “SIGHTSEEING IN BERLIN” can be combined to form a higher level decision on patch for
“SIGHTSEEING”, which in turn can be combined with decisions on patches like “HOTEL” and
“TRANSPORTATION” to form a even higher level decision on “TRAVEL”. Note that one low-
level topic does not exclusively belong to a higher-level one. For example, the “WEATHER”
patch may belong to higher level patches “TRAVEL” and “AGRICULTURE” at the same time.

Figure 3: An example of decision hierarchy.

Quite intuitively, this decision composition mecha-
nism is also local and varies with the “locations”.
For example, when combining “SIGHTSEEING IN
PARIS” and “SIGHTSEEING IN BERLIN”, it is more
like an OR logic since it only takes one of them to
be positive. A more complicated strategy is often
needed in, for example, a decision on “TRAVELING”,
which often takes more than one element, like
“SIGHTSEEING”, “HOTEL”, “TRANSPORTATION”,
or “WEATHER”, but not necessarily all of them. The
particular strategy taken by a local decision compo-

sition unit is fully encoded in the weights of the corresponding neuron through

sp(x,y) = f
(
w>p Φp(x,y)

)
, (3)

where f is the active function. As stated in [12], a simple nonlinear function (such as sigmoid) with
proper weights is capable of realizing basic logics such as AND and OR. Here we decide the hierar-
chical architecture of the decision making, but leave the exact mechanism for decision combination
(encoded in the weights) to the learning algorithm later.

3 The Construction of Deep Architecture

The process for constructing the deep architecture for matching consists of two steps. First, we
define parallel text patches with different resolutions using bilingual topic models. Second, we
construct a layered directed acyclic graph (DAG) describing the hierarchy of the topics, based on
which we further construct the topology of the deep neural network.

3.1 Topic Modeling for Parallel Texts

This step is to discover parallel text segments for meaningful co-occurrence patterns of words in
both domains. Although more sophisticated methods may exist for capturing this relationship, we
take an approach similar to the multi-lingual pLSI proposed in [10], and simply put the words
from parallel texts together to a joint document, while using a different virtual vocabulary for each
domain to avoid any mixing up. For example, the word hotel appearing in domain X is treated as
a different word as hotel in domain Y . For modeling tool, we use latent Dirichlet allocation (LDA)
with Gibbs sampling [2] on all the training data. Notice that by using topic modeling, we allow the
overlapping sets of words, which is advantageous over non-overlapping clustering of words, since
we may expect some words (e.g., hotel and price) to appear in multiple segments. Table 1 gives
two example parallel-topics learned from a traveling-related Question-Answer corpus (see Section
5 for more details). As we can see intuitively, in the same topic, a word in domain X co-occurs
frequently not only with words in the same domain, but also with those in domain Y . We fit the
same corpus with L topic models with decreasing resolutions1, with the series of learned topic sets
denoted asH = {T1, · · · , T`, · · · , TL}, with ` indexing the topic resolution.

1Topic resolution is controlled mainly by the number of topics, i.e., a topic model with 100 topics is consid-
ered to be of lower resolution (or more general) than the one with 500 topics.

3

Topic Label Question Answer
SPECIAL local delicacy, special product tofu, speciality, aroma, duck, sweet, game, cuisine
PRODUCT snack food, quality, tasty, · · · sticky rice, dumpling, mushroom, traditional,· · ·
TRANSPORTATION route, arrangement, location distance, safety, spending, gateway, air ticket, pass

arrive, train station, fare, · · · traffic control, highway, metroplis, tunnel, · · ·

Table 1: Examples of parallel topics. Originally in Chinese, translated into English by the authors.

3.2 Getting Matching Architecture
With the set of topics H, the architecture of the deep matching model can then be obtained in the
following three steps. First, we trim the words (in both domains X and Y) with the low probability
for each topic in T` ∈ H, and the remaining words in each topic specify a patch p. With a slight
abuse of symbols, we still use H to denote the patch sets with different resolutions. Second, based
on the patches specified inH, we construct a layered DAG G by assigning each patch with resolution
` to a number of patches with resolution ` − 1 based on the word overlapping between patches, as
illustrated in Figure 4 (left panel). If a patch p in layer ` − 1 is assigned to patch p′ in layer `, we
denote this relation as p ≺ p′ 2. Third, based on G, we can construct the architecture of the patch-
induced layers of the neural network. More specifically, each patch p in layer ` will be transformed
into K` neurons in the (`−1)th hidden layer in the neural network, and the K` neurons are connected
to the neurons in the `th layer corresponding to patch p′ iff p ≺ p′. In other words, we determine the
sparsity-pattern of the weights, but leave the values of the weights to the later learning phase. Using
the image analogy, the neurons corresponding to patch p are referred to as filters. Figure 4 illustrates
the process of transforming patches in layer ` − 1 (specific topics) and layer ` (general topics) into
two layers in neural network with K` = 2.

patches neural network

Figure 4: An illustration of constructing the deep architecture from hierarchical patches.

The overall structure is illustrated in Figure 5. The input layer is a two-dimensional interaction
space, which connects to the first patch-induced layer p-layerI followed by the second patch-
induced layer p-layerII. The connections to p-layerI and p-layerII have pre-specified s-
parsity patterns. Following p-layerII is a committee layer (c-layer), with full connections from
p-layerII. With an input (x,y), we first get the local matching decisions on p-layerI, associ-
ated with patches in the interaction space. Those local decisions will be sent to the corresponding
neurons in p-layerII to get the first round of fusion. The outputs of p-layerII are then sent to
c-layer for further decision composition. Finally the logistic regression unit in the output layer
summarizes the decisions on c-layer to get the final matching score s(x,y). This architecture is
referred to as DEEPMATCH in the remainder of the paper.

Figure 5: An illustration of the deep architecture for matching decisions.

2In the assignment, we make sure each patch in layer ` is assigned to at least m` patches in layer `− 1.

4

3.3 Sparsity
The final constructed neural network has two types of sparsity. The first type of sparsity is enforced
through architecture, since most of the connections between neurons in adjacent layers are turned
off in construction. In our experiments, only about 2% of parameters are allowed to be nonzero.
The second type of sparsity is from the characteristics of the texts. For most object pairs in our
experiment, only a small percentage of neurons in the lower layers are active (see Section 5 for more
details). This is mainly due to two factors, 1) the input parallel texts are very short (usually < 100
words), and 2) the patches are well designed to give a compact and sparse representation of each of
the texts, as describe in Section 3.1.

To understand the second type of sparsity, let us start with the following definition:
Definition 3.1. An input pair (x,y) overlaps with patch p, iff x∩ px 6= ∅ and y∩ py 6= ∅, where px
and py are respectively the word indices of patch p in domain X and Y .

We also define the following indicator function overlap((x,y), p)
def
= ‖px ∩x‖0 · ‖py ∩y‖0. The

proposed architecture only allows neurons associated with patches overlapped with the input to have
nonzero output. More specifically, the output of neurons associated with patch p is

sp(x,y) = ap(x,y) · overlap((x,y), p) (4)

to ensure that sp(x,y) ≥ 0 only when there is non-empty cross-talking of x and y within patch p,
where ap(x,y) is the activation of neuron before this rule is enforced. It is not hard to understand,
for any input (x,y), when we track any upwards path of decisions from input to a higher level, there
is nonzero matching vote until we reach a patch that contains terms from both x and y. This view is
particularly useful in parameter tuning with back-propagation: the supervision signal can only get
down to a patch p when it overlaps with input (x,y). It is easy to show from the definition, once
the supervision signal stops at one patch p, it will not get pass p and propagate to p’s children, even
if those children have other ancestors. This indicates that when using stochastic gradient descent,
the updating of weights usually only involves a very small number of neurons, and therefore can be
very efficient.

3.4 Local Decision Models
In the hidden layers p-layerI, p-layerII, and c-layer, we allow two types of neurons, cor-
responding to two active functions: 1) linear flin(t) = x, and 2) sigmoid fsig(t) = (1 + e−t)−1. In
the first layer, each patch p for (x,y) takes the value of the interaction matrix Mp = xpy

>
p , and the

kth local decision on p is given by a
(k)
p (x,y) = f

(k)
p

(∑
n,m A

(k)
p,nmMp,nm + b

(k)
p

)
, with weight

given by A(k) and the activation function f
(k)
p ∈ {flin, fsig} . With low-rank constraint on A(k) to

reduce the complexity, we essentially have

a(k)p (x,y) = f (k)
p

(
x>p L

(k)
x,p(L(k)

y,p)>yp + b(k)p

)
, k = 1, · · · ,K1, (5)

where L
(k)
x,p ∈ R|px|×Dp , L(k)

y,p ∈ R|py|×Dp , with the latent dimension Dp. As indicated in Figure 5,
the two-dimensional structure is lost after leaving the input layer, while the local structure is kept in
the second patch-induced layer p-layerII. Basically, a neuron in layer p-layerII processes the
low-level decisions assigned to it made in layer p-layerI

a(k)p (x,y) = f (k)
p

(
w>p,kΦp(x,y)

)
, k = 1, · · · ,K2, (6)

where Φp(x,y) lists all the lower-level decisions assigned to unit p:

Φp(x,y) = [· · · , s(1)p′ (x,y), s(2)p′ (x,y), · · · , s(K1)
p′ (x,y), · · ·], ∀p′ ≺ p, p′ ∈ T1

which contains all the decisions on patches in layer p-layerI subsumed by p. The local decision
models in the committee layer c-layer are the same as in p-layerII, except that they are fully
connected to neurons in the previous layer.

4 Learning
We divide the parameters, denotedW , into three sets: 1) the low-rank bilinear model for mapping
from input patches to p-layerI, namely L

(k)
x,p, L(k)

y,p, and offset b(k)p for all p ∈ P and filter index
1 ≤ k ≤ K1, 2) the parameters for connections between patch-induced neurons, i.e., the weights

5

between p-layerI and p-layerII, denoted (w
(k)
p , b

(k)
p) for associated patch p and filter index

1 ≤ k ≤ K2, and 3) the weights for committee layer (c-layer) and after, denoted as wc.

We employ a discriminative training strategy with a large margin objective. Suppose that we are
given the following triples (x,y+,y−) from the oracle, with x (∈ X) matched with y+ better than
with y− (both ∈ Y). We have the following ranking-based loss as objective:

L(W,Dtrn) =
∑

(xi,y
+
i ,y−i)∈Dtrn

eW(xi,y
+
i ,y

−
i) + R(W), (7)

where R(W) is the regularization term, and eW(xi,y
+
i ,y

−
i) is the error for triple (xi,y

+
i ,y

−
i),

given by the following large margin form:

ei = eW(xi,y
+
i ,y

−
i) = max(0,m + s(xi,y

−
i)− s(xi,y

+
i)),

with 0 < m < 1 controlling the margin in training. In the experiments, we use m = 0.1.

4.1 Back-Propagation
All three sets of parameters are updated through back-propagation (BP). The updating of the weights
from hidden layers are almost the same as that for conventional Multi-layer Perceptron (MLP), with
two slight differences: 1) we have a different input model and two types of activation function, and
2) we could gain some efficiency by leveraging the sparsity pattern of the neural network, but the
advantage diminishes quickly after the first two layers.

This sparsity however greatly reduces the number of parameters for the first two layers, and hence
the time on updating them. From Equation (4-6), the sub-gradient of L(k)

x,p w.r.t. empirical error e is

∂e

∂L
(k)
x,p

=
∑
i

(∂ei

∂ s(k)p (xi,y
+
i)

∂ s(k)p (xi,y
+
i)

∂ pot
(k)
p (xi,y

+
i)

(
xi,p(y+

i,p)>L(k)
y,p

)
· overlap

(
(xi,y

+
i), p

)
− ∂ei

∂ s(k)p (xi,y
−
i)

∂ s(k)p (xi,y
−
i)

∂ pot
(k)
p (xi,y

−
i)

(
xi,p(y−i,p)>L(k)

y,p

)
· overlap

(
(xi,y

−
i), p

))
, (8)

where i indices the training instances, and

pot(k)p (x,y) = x>p L
(k)
x,p(L(k)

y,p)>yp + b(k)p

stands for the potential value for s(k)p . The gradient for L(k)
y,p is given in a slightly different way.For

the weights between p-layerI and p-layerII, the gradient can also benefit from the sparsity in
activation.

We use stochastic sub-gradient descent with mini-batches [9], each of which consists of 50 randomly
generated triples (x,y+,y−), where the (x,y+) is the original pair, and y− is a randomly selected
response. With this type of optimization, most of the patches in p-layerI and p-layerII get zero
inputs, and therefore remain inactive by definition during the prediction as well as updating process.
On the tasks we have tried, only about 2% of parameters are allowed to be nonzero for weights
among the patch-induced layers. Moreover, during stochastic gradient descent, only about 5% of
neurons in p-layerI and p-layerII are active on average for each training instance, indicating
that the designed architecture has greatly reduced the essential capacity of the model.

5 Experiments
We compare our deep matching model to the inner-product based models, ranging from variants of
bilinear models to nonlinear mappings for ΦX (·) and ΦY(·). For bilinear models, we consider only
the low-rank models with ΦX (x) = P>x x and Φy(y) = P>x y, which gives

match(x,y) =< P>x x, P>y y >= x>PxP
>
y y.

With different kinds of constraints on Px and Py , we get different models. More specifically, with 1)
orthnormality constraints P>x Py = Id×d, we get partial least square (PLS) [19], and with 2) `2 and
`1 based constraints put on rows or columns, we get Regularized Mapping to Latent Space (RMLS)

6

[20]. For nonlinear models, we use a modified version of the Siamese architecture [3], which uses
two different neural networks for mapping objects in the two domains to the same d-dimensional
latent space, where inner product can be used as a measure of matching and is trained with a similar
large margin objective. Different from the original model in [3], we allow different parameters for
mapping to handle the domain heterogeneity. Please note here that we omit the nonlinear model for
shared representation [13, 18, 17] since they are essentially also inner product based models (when
used for matching) and not designed to deal with short texts with large vocabulary.

5.1 Data Sets

We use the learned matching function for retrieving response texts y for a given query text x, which
will be ranked purely based on the matching scores. We consider the following two data sets:

Question-Answer: This data set contains around 20,000 traveling-related (Question, Answer) pairs
collected from Baidu Zhidao (zhidao.baidu.com) and Soso Wenwen (wenwen.soso.com),
two famous Chinese community QA Web sites. The vocabulary size is 52,315.

Weibo-Comments: This data set contains half million (Weibo, comment) pairs collected from Sina
Weibo (weibo.com), a Chinese Twitter-like microblog service. The task is to find the appropriate
responses (e.g., comments) to given Weibo posts. This task is significantly harder than the Question-
Answer task since the Weibo data are usually shorter, more informal, and harder to capture with
bag-of-words. The vocabulary size for tweets and comments are both 48, 724.

On both data sets, we generate (x,y+,y−) triples, with y− being randomly selected. The training
data are randomly split into training data and testing data, and the parameters of all models (including
the learned patches for DEEPMATCH) are learned on training data. The hyper parameters (e.g., the
latent dimensions of low-rank models and the regularization coefficients) are tuned on a validation
set (as part of the training set). We use NDCG@1 and NDCG@6 [8] on random pool with size 6
(one positive + five negative) to measure the performance of different matching models.

5.2 Performance Comparison

The retrieval performances of all four models are reported in Table 2. Among the two data sets, the
Question-Answer data set is relatively easy, with all four matching models improve upon random
guesses. As another observation, we get significant gain of performance by introducing nonlinearity
in the mapping function, but all the inner-product based matching models are outperformed by
the proposed DEEPMATCH with large margin on this data set. The story is slightly different on
the Weibo-Response data set, which is significantly more challenging than the Q-A task in that it
relies more on the content of texts and is harder to be captured by bag-of-words. This difficulty
can be hardly handled by inner-product based methods, even with nonlinear mappings of SIAMESE
NETWORK. In contrast, DEEPMATCH still manages to perform significantly better than all other
models.

To further understand the performances of the different matching models, we also compare the
generalization ability of two nonlinear models. We find that the SIAMESE NETWORK can achieve
over 90% correct pairwise comparisons on training set with small regularization, but generalizes
relatively poorly on the test set with all the configurations we tried. This is not surprising since
SIAMESE NETWORK has the same level of parameters (varying with the number of hidden units)
as DEEPMATCH. We argue that our model has better generalization property than the Siamese
architecture with similar model complexity.

Question-Answer Weibo-Response
nDCG@1 nDCG@6 nDCG@1 nDCG@6

RANDOM GUESS 0.167 0.550 0.167 0.550
PLS 0.285 0.662 0.171 0.587
RMLS 0.282 0.659 0.165 0.553
SIAMESE NETWORK 0.357 0.735 0.175 0.574
DEEPMATCH 0.723 0.856 0.336 0.665

Table 2: The retrieval performance of matching models on the Q-A and Weibo data sets.

7

5.3 Model Selection
We tested different variants of the current DEEPMATCH architecture, with results reported in Figure
6. There are two ways to increase the depth of the proposed method: adding patch-induced layers
and committee layers. As shown in Figure 6 (left and middle panels), the performance of DEEP-
MATCH stops increasing in either way when the overall depth goes beyond 6, while the training
gets significantly slower with each added hidden layer. The number of neurons associated with each
patch (Figure 6, right panel) follows a similar story: the performance gets flat out after the number
of neurons per patch reaches 3, again with training time and memory increased significantly. As
another observation about the architecture, DEEPMATCH with both linear and sigmoid activation
functions in hidden layers yields slightly but consistently better performance than that with only
sigmoid function. Our conjecture is that linear neurons provide shortcuts for low-level matching
decision to high level composition units, and therefore facilitate the informative low-level units in
determining the final matching score.

size of patch-induced layers size of committee layer(s) number of filters/patch

Figure 6: Choices of architecture for DEEPMATCH. For the left and middle panels, the numbers in
parentheses stand for number of neurons in each layer.

6 Related Work
Our model is apparently a special case of the learning-to-match models, for which much effort is on
designing a bilinear form [1, 19, 7]. As we discussed earlier, this kind of models cannot sufficiently
model the rich and nonlinear structure of matching complicated objects. In order to introduce more
modeling flexibility, there has been some works on replacing Φ(·) in Equation (1) with an nonlinear
mapping, e.g., with neural networks [3] or implicitly through kernelization [6]. Another similar
thread of work is the recent advances of deep learning models on multi-modal input [13, 17]. It
essentially finds a joint representation of inputs in two different domains, and hence can be used to
predict the other side. Those deep learning models however do not give a direct matching function,
and cannot handle short texts with a large vocabulary.

Our work is in a sense related to the sum-product network (SPN)[4, 5, 15], especially the work in
[4] that learns the deep architecture from clustering in the feature space for the image completion
task. However, it is difficult to determine a regular architecture like SPN for short texts, since the
structure of the matching task for short texts is not as well-defined as that for images. We therefore
adopt a more traditional MLP-like architecture in this paper.

Our work is conceptually close to the dynamic pooling algorithm recently proposed by Socher et al
[16] for paraphrase identification, which is essentially a special case of matching between two ho-
mogeneous domains. Similar to our model, their proposed model also constructs a neural network
on the interaction space of two objects (sentences in their case), and outputs the measure of semantic
similarity between them. The major differences are three-fold, 1) their model relies on a predefined
compact vectorial representation of short text, and therefore the similarity metric is not much more
than summing over the local decisions, 2) the nature of dynamic pooling allows no space for ex-
ploring more complicated structure in the interaction space, and 3) we do not exploit the syntactic
structure in the current model, although the proposed architecture has the flexibility for that.

7 Conclusion and Future Work
We proposed a novel deep architecture for matching problems, inspired partially by the long thread
of work on deep learning. The proposed architecture can sufficiently explore the nonlinearity and
hierarchy in the matching process, and has been empirically shown to be superior to various inner-
product based matching models on real-world data sets.

8

References
[1] B. Bai, J. Weston, D. Grangier, R. Collobert, K. Sadamasa, Y. Qi, O. Chapelle, and K. Weinberger.

Supervised semantic indexing. In CIKM’09, pages 187–196, 2009.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[3] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to
face verification. In Proc. of Computer Vision and Pattern Recognition Conference. IEEE Press, 2005.

[4] A. Dennis and D. Ventura. Learning the architecture of sum-product networks using clustering on vari-
ables. In Advances in Neural Information Processing Systems 25.

[5] R. Gens and P. Domingos. Discriminative learning of sum-product networks. In NIPS, pages 3248–3256,
2012.

[6] D. Grangier and S. Bengio. A discriminative kernel-based model to rank images from text queries. IEEE
transactions on PAMI, 30(8):1371–1384, 2008.

[7] D. Hardoon and J. Shawe-Taylor. Kcca for different level precision in content-based image retrieval. In
Proceedings of Third International Workshop on Content-Based Multimedia Indexing, 2003.

[8] K. Järvelin and J. Kekäläinen. Ir evaluation methods for retrieving highly relevant documents. In SIGIR,
pages 41–48, 2000.

[9] Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In G. Orr and M. K., editors, Neural
Networks: Tricks of the trade. Springer, 1998.

[10] M. Littman, S. Dumais, and T. Landauer. Automatic cross-language information retrieval using latent
semantic indexing. In Cross-Language Information Retrieval, chapter 5, pages 51–62, 1998.

[11] A. K. Menon and C. Elkan. Link prediction via matrix factorization. In Proceedings of the 2011 Eu-
ropean conference on Machine learning and knowledge discovery in databases - Volume Part II, ECML
PKDD’11, pages 437–452, 2011.

[12] M. Minsky and S. Papert. Perceptrons - an introduction to computational geometry. MIT Press, 1987.

[13] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal deep learning. In International
Conference on Machine Learning (ICML), Bellevue, USA, June 2011.

[14] V. Ordonez, G. Kulkarni, and T. L. Berg. Im2text: Describing images using 1 million captioned pho-
tographs. In Neural Information Processing Systems (NIPS), 2011.

[15] H. Poon and P. Domingos. Sum-product networks: A new deep architecture. In UAI, pages 337–346,
2011.

[16] R. Socher and E. Huang and J. Pennington and A. Ng and C. Manning. Dynamic Pooling and Unfolding
Recursive Autoencoders for Paraphrase Detection. In Advances in NIPS 24. 2011.

[17] N. Srivastava and R. Salakhutdinov. Multimodal learning with deep boltzmann machines. In NIPS, pages
2231–2239, 2012.

[18] B. Wang, X. Wang, C. Sun, B. Liu, and L. Sun. Modeling semantic relevance for question-answer pairs
in web social communities. In ACL, pages 1230–1238, 2010.

[19] W. Wu, H. Li, and J. Xu. Learning query and document similarities from click-through bipartite graph
with metadata. In Proceedings of the sixth ACM international conference on WSDM, pages 687–696,
2013.

[20] W. Wu, Z. Lu, and H. Li. Regularized mapping to latent structures and its application to web search.
Technical report.

9

