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Abstract

A probabilistic model based on the horseshoe prior is proposed for learning de-
pendencies in the process of identifying relevant features for prediction. Exact
inference is intractable in this model. However, expectation propagation offers
an approximate alternative. Because the process of estimating feature selection
dependencies may suffer from over-fitting in the model proposed, additional data
from a multi-task learning scenario are considered for induction. The same model
can be used in this setting with few modifications. Furthermore, the assumptions
made are less restrictive than in other multi-task methods: The different tasks
must share feature selection dependencies, but can have different relevant features
and model coefficients. Experiments with real and synthetic data show that this
model performs better than other multi-task alternatives from the literature. The
experiments also show that the model is able to induce suitable feature selection
dependencies for the problems considered, only from the training data.

1 Introduction

Many linear regression problems are characterized by a large number d of features or explaining
attributes and by a reduced number n of training instances. In this large d but small n scenario
there is an infinite number of potential model coefficients that explain the training data perfectly
well. To avoid over-fitting problems and to obtain estimates with good generalization properties, a
typical regularization is to assume that the model coefficients are sparse, i.e., most coefficients are
equal to zero [1]. This is equivalent to considering that only a subset of the features or attributes
are relevant for prediction. The sparsity assumption can be introduced by carrying out Bayesian
inference under a sparsity enforcing prior for the model coefficients [2, 3], or by minimizing a loss
function penalized by some sparse regularizer [4, 5]. Among the priors that enforce sparsity, the
horseshoe has some attractive properties that are very convenient for the scenario described [3]. In
particular, this prior has heavy tails, to model coefficients that significantly differ from zero, and an
infinitely tall spike at the origin, to favor coefficients that take negligible values.

The estimation of the coefficients under the sparsity assumption can be improved by introducing
dependencies in the process of determining which coefficients are zero [6, 7]. An extreme case of
these dependencies appears in group feature selection methods in which groups of coefficients are
considered to be jointly equal or different from zero [8, 9]. However, a practical limitation is that
the dependency structure (groups) is often assumed to be given. Here, we propose a model based on
the horseshoe prior that induces the dependencies in the feature selection process from the training
data. These dependencies are expressed by a correlation matrix that is specified byO(d) parameters.
Unfortunately, the estimation of these parameters from the training data is difficult since we consider
n < d instances only. Thus, over-fitting problems are likely to appear. To improve the estimation
process we assume a multi-task learning setting, where several learning tasks share feature selection
dependencies. The method proposed can be adapted to such a scenario with few modifications.
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Traditionally, methods for multi-task learning under the sparsity assumption have considered com-
mon relevant and irrelevant features among tasks [8, 10, 11, 12, 13, 14]. Nevertheless, recent re-
search cautions against this assumption when the supports and values of the coefficients for each
task can vary widely [15]. The model proposed here limits the impact of this problem because it is
has fewer restrictions. The tasks used for induction can have, besides different model coefficients,
different relevant features. They must share only the dependency structure for the selection process.

The model described here is most related to the method for sparse coding introduced in [16], where
spike-and-slab priors [2] are considered for multi-task linear regression under the sparsity assump-
tion and dependencies in the feature selection process are specified by a Boltzmann machine. Fitting
exactly the parameters of a Boltzmann machine to the observed data has exponential cost in the num-
ber of dimensions of the learning problem. Thus, when compared to the proposed model, the model
considered in [16] is particularly difficult to train. For this, an approximate algorithm based on
block-coordinate optimization has been described in [17]. The algorithm alternates between greedy
MAP estimation of the sparsity patterns of each task and maximum pseudo-likelihood estimation of
the Boltzmann parameters. Nevertheless, this algorithm lacks a proof of convergence and we have
observed that is prone to get trapped in sub-optimal solutions.

Our experiments with real and synthetic data show the better performance of the model proposed
when compared to other methods that try to overcome the problem of different supports among
tasks. These methods include the model described in [16] and the model for dirty data proposed
in [15]. These experiments also illustrate the benefits of the proposed model for inducing depen-
dencies in the feature selection process. Specifically, the dependencies obtained are suitable for the
multi-task learning problems considered. Finally, a difficulty of the model proposed is that exact
Bayesian inference is intractable. Therefore, expectation propagation (EP) is employed for efficient
approximate inference. In our model EP has a cost that is O(Kn2d), where K is the number of
learning tasks, n is the number of samples of each task, and d is the dimensionality of the data.

The rest of the paper is organized as follows: Section 2 describes the proposed model for learning
feature selection dependencies. Section 3 shows how to use expectation propagation to approximate
the quantities required for induction. Section 4 compares this model with others from the literature
on synthetic and real data regression problems. Finally, Section 5 gives the conclusions of the paper
and some ideas for future work.

2 A Model for Learning Feature Selection Dependencies

We describe a linear regression model that can be used for learning dependencies in the process
of identifying relevant features or attributes for prediction. For simplicity, we first deal with the
case of a single learning task. Then, we show how this model can be extended to address multi-
task learning problems. In the single task scenario we consider some training data in the form of
n d-dimensional vectors summarized in a design matrix X = (x1, . . . ,xn)

T and associated targets
y = (y1, . . . , yn)

T, with yi ∈ R. A linear predictive rule is assumed for y given X. Namely,
y = Xw + ε, where w is a vector of latent coefficients and ε is a vector of independent Gaussian
noise with variance σ2, i.e., ε ∼ N (0, σ2I). Given X and y, the likelihood for w is:

p(y|X,w) =

n∏
i=1

p(yi|xi,w) =

n∏
i=1

N (yi|wTxi, σ
2) = N (y|Xw, σ2I) . (1)

Consider the under-determined scenario n < d. In this case, the likelihood is not strictly concave
and infinitely many values of w fit the training data perfectly well. A strong regularization technique
that is often used in this context is to assume that only some features are relevant for prediction [1].
This is equivalent to assuming that w is sparse with many zeros. This inductive bias can be naturally
incorporated into the model using a horseshoe sparsity enforcing prior for w [3].

The horseshoe prior lacks a closed form but can be defined as a scale mixture of Gaussians:

p(w|τ) =
d∏
j=1

p(wj |τ) , p(wj |τ) =
∫
N (wj |0, λ2jτ2) C+(λj |0, 1) dλj , (2)

where λj is a latent scale for coefficient wj , C+(·|0, 1) is a half-Cauchy distribution with zero loca-
tion and unit scale and τ > 0 is a global shrinkage parameter that controls the level of sparsity. The
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smaller the value of τ the sparser the prior and vice-versa. Figure 1 (left) and (middle) show a com-
parison of the horseshoe with other priors from the literature. The horseshoe has an infinitely tall
spike at the origin which favors coefficients with small values, and has heavy tails which favor co-
efficients that take values that significantly differ from zero. Furthermore, assume that τ = σ2 = 1
and that X = I, and define κj = 1/(1 + λ2j ). Then, the posterior mean for wj is (1− κj)yj , where
κj is a random shrinkage coefficient that can be interpreted as the amount of weight placed at the
origin [3]. Figure 1 (right) shows the prior density for κj that results from the horseshoe. It is from
the shape of this figure that the horseshoe takes its name. We note that one expects to see two things
under this prior: relevant coefficients (κj ≈ 0, no shrinkage), and zeros (κj ≈ 1, total shrinkage).
The horseshoe is therefore very convenient for the sparse inducing scenario described before.
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Figure 1: (left) Density of different priors, horseshoe, Gaussian, Student-t and Laplace near the
origin. Note the infinitely tall spike of the horseshoe. (middle) Tails of the different priors considered
before. (right) Prior density of the shrinkage parameter κj for the horseshoe prior.

A limitation of the horseshoe is that it does not consider dependencies in the feature selection pro-
cess. Specifically, the fact that one feature is actually relevant for prediction has no impact at all
in the prior relevancy or irrelevancy of other features. We now describe how to introduce these
dependencies in the horseshoe. Consider the definition of a Cauchy distribution as the ratio of two
independent standard Gaussian random variables [18]. An equivalent representation of the prior is:

p(w|ρ2, γ2) =
∫ d∏

j=1

N (wj |0, u2j/v2j )N (uj |0, ρ2)N (vj |0, γ2) dujdvj . (3)

where uj and vj are latent variables introduced for each dimension j. In particular, λj = ujγ/vjρ.
Furthermore, τ has been incorporated into the prior for uj and vj using τ2 = ρ2/γ2. The latent
variables uj and vj can be interpreted as indicators of the relevance or irrelevance of feature j. The
larger u2j , the more relevant the feature. Conversely, the larger v2j , the more irrelevant.

A simple way of introducing dependencies in the feature selection process is to consider correlations
among variables uj and vj , with j = 1, . . . , d. These correlations can be introduced in (3) as follows:

p(w|ρ2, γ2,C) =

∫  d∏
j=1

N (wj |0, u2j/v2j )

N (u|0, ρ2C)N (v|0, γ2C) dudv , (4)

where u = (u1, . . . , ud)
T, v = (v1, . . . , vd)

T, C is a correlation matrix that specifies the dependen-
cies in the feature selection process, and ρ2 and γ2 act as regularization parameters that control the
level of sparsity. When C = I, (4) factorizes and gives the same prior as the one in (2) and (3). In
practice, however, C has to be estimated from the data. This can be problematic since it will involve
the estimation ofO(d2) free parameters which can lead to over-fitting. To alleviate this problem and
also to allow for efficient approximate inference we consider a special form for C:

C = ∆M∆ , M = (D + PPT) , ∆ = diag(1/
√
M11, . . . , 1/

√
Mdd) , (5)

where diag(a1, . . . , ad) denotes a diagonal matrix with entries a1, . . . , ad; D is a diagonal matrix
whose entries are all equal to some small positive constant (this matrix guarantees that C−1 exists);
the products by ∆ ensure that the entries of C are in the range (−1, 1); and P is a d ×m matrix
of real entries which specifies the correlation structure of C. Thus, C is fully determined by P and
will only have O(md) free parameters with m < d. The value of m is a regularization parameter
that limits the complexity of C. The larger its value, the more expressive C is. For computational
reasons described later on we will set in our experimentsm equal to n, the number of data instances.
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2.1 Inference, Prediction and Learning Feature Selection Dependencies

Denote by z = (wT,uT,vT)T the vector of latent variables of the model described above. Based on
the formulation of the previous section, the joint probability distribution of y and z is:

p(y, z|X, σ2, ρ2, γ2,C) = N (y|Xw, σ2I)N (u|0, ρ2C)N (v|0, γ2C)

d∏
j=1

N
(
wj |0, u2j/v2j

)
. (6)

Figure 2 shows the factor graph corresponding to this joint probability distribution. This graph
summarizes the interactions between the random variables in the model. All the factors in (6) are
Gaussian, except the ones corresponding to the prior for wj given uj and vj , N (wj |0, u2j/v2j ).
Given the observed targets y one is typically interested in inferring the latent variables z of the
model. For this, Bayes’ theorem can be used:

p(z|X,y, σ2, ρ2, γ2,C) =
p(y, z|X, σ2, ρ2, γ2,C)

p(y|X, σ2, ρ2, γ2,C)
, (7)

where the numerator in the r.h.s. of (7) is the joint distribution (6) and the denominator is simply a
normalization constant (the model evidence) which can be used for Bayesian model selection [19].

The posterior distribution in (7) is useful to compute a predictive distribution for the target ynew
associated to a new unseen data instance xnew:

p(ynew|xnew,X, σ
2, ρ2, γ2,C) =

∫
p(ynew|xnew,w) p(z|X, σ2, ρ2, γ2,C) dz . (8)

Similarly, one can marginalize (7) with respect to w to obtain a posterior distribution for u and v
which can be useful to identify the most relevant or irrelevant features.

...

...
...

Figure 2: Factor graph of the probabilistic
model. The factor f(·) corresponds to the likeli-
hood N (y|Xw, σ2I), and each gj(·) to the prior
for wj given uj and vj , N (wj |0, u2

j/v
2
j ). Finally,

hu(·) and hv(·) correspond to N (u|0, ρ2C) and
N (v|0, γ2C), respectively. Only the targets y are
observed, the other variables are latent.

Ideally, however, one should also infer C, the cor-
relation matrix that describes the dependencies in
the feature selection process, and compute a pos-
terior distribution for it. This can be complicated,
even for approximate inference methods. Denote
by Z the model evidence, i.e., the denominator in
the r.h.s. of (7). A simpler alternative is to use
gradient ascent to maximize logZ (and therefore
Z) with respect to P, the matrix that completely
specifies C. This corresponds to type-II maxi-
mum likelihood (ML) estimation and allows to
determine P from the training data alone, without
resorting to cross-validation [19]. The gradient of
logZ with respect to P, i.e., ∂ logZ/∂P can be
used for this task. The other hyper-parameters of
the model σ2, ρ2 and γ2 can be found following
a similar approach.

Unfortunately, neither (7), (8) nor the model ev-
idence can be computed in closed form. Specif-
ically, it is not possible to compute the required
integrals analytically. Thus, one has to resort to
approximate inference. For this, we use expecta-
tion propagation [20]. See Section 3 for details.

2.2 Extension to the Multi-Task Learning Setting

In the single-task learning setting maximizing the model evidence with respect to P is not expected
to be effective to improve the prediction accuracy. The reason is the difficulty of obtaining an ac-
curate estimate of P. This matrix has m × d free parameters and these have to be induced from a
small number of n < d training instances. The estimation process is hence likely to be affected by
over-fitting. One way to mitigate over-fitting problems is to consider additional data for the estima-
tion process. These additional data may come from a multi-task learning setting, where there are K
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related but different tasks available for induction. A simple assumption is that all these tasks share a
common dependency structure C for the feature selection process, although the model coefficients
and the actual relevant features may differ between tasks. This assumption is less restrictive than as-
suming jointly relevant and irrelevant features across tasks and can be incorporated into the learning
process using the described model with few modifications. By using the data from the K tasks for
the estimation of P we expect to obtain better estimates and to improve the prediction accuracy.

Assume there are K learning tasks available for induction and that each task k = 1, . . . ,K consists
of a design matrix Xk with nk d-dimensional data instances and target values yk. As in (1), a linear
predictive rule with additive Gaussian noise σ2

k is considered for each task. Let wk be the model
coefficients of task k. Assume for the model coefficients of each task a horseshoe prior as the one
specified in (4) with a shared correlation matrix C, but with task specific hyper-parameters ρ2k and
γ2k . Denote by uk and vk the vectors of latent Gaussian variables of the prior for task k. Similarly, let
zk = (wT

k,u
T
k,v

T
k)

T be the vector of latent variables of task k. Then, the joint posterior distribution
of the latent variables of the different tasks factorizes as follows:

p
(
{z}Kk=1|{Xk,yk, τ

2
k , ρ

2
k, σ

2
k}Kk=1,C

)
=

K∏
k=1

p(yk, zk|Xk, σ
2
k, ρ

2
k, γ

2
k,C)

p(yk|Xk, σ2
k, ρ

2
k, γ

2
k,C)

, (9)

where each factor in the r.h.s. of (9) is given by (7). This indicates that the K models for each task
can be learnt independently given C and σ2

k, ρ2k and γ2k ∀k. Denote by ZMT the denominator in the
r.h.s. of (9), i.e., ZMT =

∏K
k=1 p(yk|Xk, σ

2
k, ρ

2
k, γ

2
k,C) =

∏K
k=1 Zk, with Zk the evidence for task

k. Then, ZMT is the model evidence for the multi-task setting. As in single-task learning, specific
values for the hyper-parameters of each task and C can be found by a type-II maximum likelihood
(ML) approach. For this, logZMT is maximized using gradient ascent. Specifically, the gradient
of logZMT with respect to σ2

k, ρ2k, γ2k and P can be easily computed in terms of the gradient of
each logZk. In summary, if there is a method to approximate the required quantities for learning
a single task using the model proposed, implementing a multi-task learning method that assumes
shared feature selection dependencies but task dependent hyper-parameters is straight-forward.

3 Approximate Inference

Expectation propagation (EP) [20] is used to approximate the posterior distribution and the evidence
of the model described in Section 2. For the clarity of presentation we focus on the model for a single
learning task. The multi-task extension of Section 2.2 is straight-forward. Consider the posterior
distribution of z, (6). Up to a normalization constant this distribution can be written as

p(z|X,y, σ2, ρ2, γ2) ∝ f(w)hu(u)hv(v)
d∏
j=1

gj(z) , (10)

where the factors in the r.h.s. of (10) are displayed in Figure 2. Note that all factors except the gj’s
are Gaussian. EP approximates (10) by a distribution q(z) ∝ f(w)hu(u)hv(v)

∏d
j=1 g̃j(z), which

is obtained by replacing each non-Gaussian factor gj in (10) with an approximate factor g̃j that is
Gaussian but need not be normalized. Since the Gaussian distribution belongs to the exponential
family of distributions, which is closed under the product and division operations [21], q is Gaussian
with natural parameters equal to the sum of the natural parameters of each factor.

EP iteratively updates each g̃j until convergence by first computing q\j ∝ q/g̃j and then minimiz-
ing the Kullback-Leibler (KL) divergence between gjq\j and qnew, KL(gjq\j ||qnew), with respect to
qnew. The new approximate factor is obtained as g̃new

j = sjq
new/q\j , where sj is the normalization

constant of gjq\j . This update rule ensures that g̃j looks similar to gj in regions of high posterior
probability in terms of q\j [20]. Minimizing the KL divergence is a convex problem whose optimum
is found by matching the means and the covariance matrices between gjq\j and qnew. These expec-
tations can be readily obtained from the derivatives of log sj with respect to the natural parameters
of q\j [21]. Unfortunately, the computation of sj is intractable under the horseshoe. As a practical
alternative, our EP implementation employes numerical quadrature to evaluate sj and its derivatives.
Importantly, gj , and therefore g̃j , depend only on wj , uj and vj , so a three-dimensional quadrature
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will suffice. However, using similar arguments to those in [7] more efficient alternatives exist. As-
sume that q\j(wj , uj , vj) = N (wj |mj , ηj)N (uj |0, νj)N (vj |0, ξj), i.e., q\j factorizes with respect
to wj , uj and vj and that the mean of uj and vj is zero. Since gj is symmetric with respect to uj
and vj then E[uj ] = E[vj ] = E[ujvj ] = E[ujwj ] = E[vjwj ] = 0 under gjq\j . Thus, if the initial
approximate factors g̃j factorize with respect to wj , uj and vj , and have zero mean with respect to
uj and vj , any updated factor will also satisfy these properties and q\j will have the assumed form.
The crucial point here is that the dependencies introduced by gj do not lead to correlations that need
to be tracked under a Gaussian approximation. In this situation, the integral of gjq\j with respect to
wj is given by the convolution of two Gaussians and the integral of the result with respect to uj and
vj can be simplified using arguments similar to those employed to obtain (3). Namely,

sj =

∫
N
(
mj |0,

νj
ξj
λ2j + ηj

)
C+(λj |0, 1)dλj , (11)

where mj , ηj , νj and ξj are the parameters of q\j . The derivatives of log sj with respect to the
natural parameters of q\j can also be evaluated using a one-dimensional quadrature. Therefore,
each update of g̃j requires five quadratures: one to evaluate sj and four to evaluate its derivatives.

Instead of sequentially updating each g̃j , we follow [7] and update these factors in parallel. For this,
we compute all q\j at the same time and update each g̃j . The marginals of q are strictly required
for this task. These can be efficiently obtained using the low rank representation structure of the
covariance matrix of q that results from the fact that all the g̃j’s are factorizing univariate Gaussians
and from the assumed form for C in (5). Specifically, if m (the number of columns of P) is equal
to n, the cost of this operation (and hence the cost of EP) is O(n2d). Lastly, we damp the update of
each g̃j as follows: g̃j = (g̃new

j )α(g̃old
j )1−α, where g̃new

j and g̃old
j respectively denote the new and the

old g̃j , and α ∈ [0, 1] is a parameter that controls the amount of damping. Damping significantly
improves the convergence of EP and leaves the fixed points of the algorithm invariant [22].

After EP has converged, q can be used instead of the exact posterior in (8) to make predictions.
Similarly, the model evidence in (7) can be approximated by Z̃, the normalization constant of q:

Z̃ =

∫
f(w)hu(u)hv(v)

d∏
j=1

g̃j(z)dwdudv . (12)

Since all the factors in (12) are Gaussian, log Z̃ can be readily computed and maximized with respect
to σ2, ρ2, γ2 and P to find good values for these hyper-parameters. Specifically, once EP has
converged, the gradient of the natural parameters of the g̃j’s with respect to these hyper-parameters
is zero [21]. Thus, the gradient of log Z̃ with respect to σ2, ρ2, γ2 and P can be computed in terms
of the gradient of the exact factors. The derivations are long and tedious and hence omitted here,
but by careful consideration of the covariance structure of q it is possible to limit the complexity of
these computations to O(n2d) if m is equal to n. Therefore, to fit a model that maximizes log Z̃ we
alternate between running EP to obtain the estimate of log Z̃ and its gradient, and doing a gradient
ascent step to maximize this estimate with respect to σ2, ρ2, γ2 and P. The derivation details of the
EP algorithm and an R-code implementation of it can be found in the supplementary material.

4 Experiments

We carry out experiments to evaluate the performance of the model described in Section 2. We refer
to this model as HSDep. Other methods from the literature are also evaluated. The first one, HSST,
is a particular case of HSDep that is obtained when each task is learnt independently and correlations
in the feature selection process are ignored (i.e., C = I). A multi-task learning model, HSMT, which
assumes common relevant and irrelevant features among tasks is also considered. The details of
this model are omitted, but it follows [10] closely. It assumes a horseshoe prior in which the scale
parameters λj in (2) are shared among tasks, i.e., each feature is either relevant or irrelevant in all
tasks. A variant of HSMT , SSMT, is also evaluated. SSMT considers a spike-and-slab prior for joint
feature selection across all tasks, instead of a horseshoe prior. The details about the prior of SSMT
are given in [10]. EP is used for approximate inference in both HSMT and SSMT. The dirty model,
DM, described in [15] is also considered. This model assumes shared relevant and irrelevant features
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among tasks. However, some tasks are allowed to have specific relevant features. For this, a loss
function is minimized via combined `1 and `1/`∞ block regularization. Particular cases of DM are
the lasso [4] and the group lasso [8]. Finally, we evaluate the model introduced in [16]. This model,
BM, uses spike-and-slab priors for feature selection and specifies dependencies in this process using
a Boltzmann machine. BM is trained using the approximate block-coordinate algorithm described
in [17]. All models considered assume Gaussian additive noise around the targets.

4.1 Experiments with Synthetic Data

A first batch of experiments is carried out using synthetic data. We generate K = 64 dif-
ferent tasks of n = 64 samples and d = 128 features. In each task, the entries of Xk are
sampled from a standard Gaussian distribution and the model coefficients, wk, are all set to
zero except for the i-th group of 8 consecutive coefficients, with i chosen randomly for each
task from the set {1, 2, . . . , 16}. The values of these 8 non-zero coefficients are uniformly dis-
tributed in the interval [−1, 1]. Thus, in each task there are only 8 relevant features for pre-
diction. Given each Xk and each wk, the targets yk are obtained using (1) with σ2

k = 0.5
∀k. The hyper-parameters of each method are set as follows: In HSST ρ2k and γ2k are found

Method Error
HSST 0.29±0.01
HSMT 0.38±0.03
SSMT 0.77±0.01
DM 0.37±0.01
BM 0.24±0.02
HSDep 0.21±0.01

Figure 3: (top) Average recon-
struction error of each method.
(bottom) Average absolute value
of the entries of the matrix C es-
timated by HSDep in gray scale
(white=0 and black=1). Black
squares are groups of jointly rel-
evant / irrelevant features.

by type-II ML. In HSMT ρ
2 and γ2 are set to the average value found

by HSST for ρ2k and γ2k , respectively. In SSMT the parameters of the
spike-and-slab prior are found by type-II ML. In HSDep m = n.
Furthermore, ρ2k and γ2k take the values found by HSST while P is
obtained using type-II ML. In all models we set the variance of the
noise for task k, σ2

k, equal to 0.5. Finally, in DM we try different
hyper-parameters and report the best results observed. After train-
ing each model on the data, we measure the average reconstruction
error of wk. Denote by ŵk the estimate of the model coefficients
for task k (this is the posterior mean except in BM and DM). The
reconstruction error is measured as ||ŵk − wk||2/||wk||2, where
|| · ||2 is the `2-norm and wk are the exact coefficients of task k.

Figure 3 (top) shows the average reconstruction error of each
method over 50 repetitions of the experiments described. HSDep ob-
tains the lowest error. The observed differences in performance are
significant according to a Student’s t-test (p-value < 5%). BM per-
forms worse than HSDep because the greedy MAP estimation of the
sparsity patterns of each task is sometimes trapped in sub-optimal
solutions. The poor results of HSMT, SSMT and DM are due to the
assumption made by these models of all tasks sharing relevant fea-
tures, which is not satisfied. Figure 3 (bottom) shows the average
entries in absolute value of the correlation matrix C estimated by
HSDep. The matrix has a block diagonal form, with blocks of size
8 × 8 (8 is the number of relevant coefficients in each task). Thus,
within each block the corresponding latent variables uj and vj are
strongly correlated, indicating jointly relevant or irrelevant features.
This is the expected estimation for the scenario considered.

4.2 Reconstruction of Images of Hand-written Digits from the MNIST

A second batch of experiments considers the reconstruction of images of hand-written digits ex-
tracted from the MNIST data set [23]. These images are in gray scale with pixel values between 0
and 255. Most pixels are inactive and equal to 0. Thus, the images are sparse and suitable to be
reconstructed using the model proposed. The images are reduced to size 10×10 pixels and the pixel
intensities are normalized to lie in the interval [0, 1]. Then, K = 100 tasks of n = 75 samples each
are generated. For this, we randomly choose 50 images corresponding to the digit 3 and 50 images
corresponding to the digit 5 (these digits are chosen because they differ significantly). Similar results
(not shown) to the ones reported here are obtained for other pairs of digits. For each task, the entries
of Xk are sampled from a standard Gaussian. The model coefficients, wk, are simply the pixel
values of each image (i.e., d = 100). Importantly, unlike in the previous experiments, the model
coefficients are not synthetically generated but correspond to actual images. Furthermore, since the
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tasks contain images of different digits they are expected to have different relevant features. Given
Xk and wk, the targets yk are generated using (1) with σ2

k = 0.1 ∀k. The objective is to reconstruct
wk from Xk and yk for each task k. The hyper-parameters are set as in Section 4.1 with σ2

k = 0.1
∀k. The reconstruction error is also measured as in that section.

Figure 4 (top) shows the average reconstruction error of each method over 50 repetitions of the ex-
periments described. Again, HSDep performs best. Furthermore, the differences in performance are
also statistically significant. The second best result corresponds to HSMT, probably due to back-
ground pixels which are irrelevant in all the tasks and to the heavy-tails of the horseshoe prior.
HSST, SSMT , BM and DM perform significantly worse. DM performs poorly probably because of
the inferior shrinking properties of the `1 norm compared to the horseshoe [3]. The poor results of
SSMT are due to the lack of heavy-tails in the spike-and-slab prior. In BM we have observed that
the greedy MAP estimation of the task supports is more frequently trapped in sub-optimal solutions.
Furthermore, the algorithm described in [17] fails to converge most times in this scenario. Figure 4
(right, bottom) shows a representative subset of the images reconstructed by each method. The best
reconstructions correspond to HSDep. Finally, Figure 4 (left, bottom) shows in gray scale the average
correlations in absolute value induced by HSDep for the selection process of each pixel of the image
with respect to the selection of a particular pixel which is displayed in green. Correlations are high
to avoid the selection of background pixels and to select pixels that actually correspond to the digits
3 and 5. The correlations induced are hence appropriate for the multi-task problem considered.

HSST HSMT SSMT DM BM HSDep

Error 0.36±0.02 0.25±0.02 0.39±0.01 0.37±0.01 0.52±0.03 0.20±0.01
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

Figure 4: (top) Average reconstruction error each method. (left, bottom) Average absolute value correlation in
a gray scale (white=0 and black=1) between the latent variables uj and vj corresponding to the pixel displayed
in green and the variables uj and vj corresponding to all the other pixels of the image. (right, bottom) Examples
of actual and reconstructed images by each method. The best reconstruction results correspond to HSDep.

5 Conclusions and Future Work

We have described a linear sparse model for learning dependencies in the feature selection process.
The model can be used in a multi-task learning setting with several tasks available for induction
that need not share relevant features, but only dependencies in the feature selection process. Exact
inference is intractable in such a model. However, expectation propagation provides an efficient
approximate alternative with a cost in O(Kn2d), where K is the number of tasks, n is the number
of samples of each task, and d is the dimensionality of the data. Experiments with real and synthetic
data illustrate the benefits of the proposed method. Specifically, this model performs better than
other multi-task alternatives from the literature. Our experiments also show that the proposed model
is able to induce relevant feature selection dependencies from the training data alone. Future paths
of research include the evaluation of this model in practical problems of sparse coding, i.e., when
all tasks share a common design matrix X that has to be induced from the data alongside with the
model coefficients, with potential applications to image denoising and image inpainting [24].
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