
Proof of Lemma 1. We start with expanding D (qt‖qt+1):
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∑
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By Proposition 1, we have that
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∑
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where we used the facts that es ≤ 1 + s + s2

2 holds for all s ≤ 0 and log(1 + s) ≤ s holds for all
s ∈ R.

The second term in (1) is rewritten as follows:∑
x,a

qt(x, a)δ(x, a|v̂t, ˆ̀t) = −η
∑
x,a

qt(x, a) ˆ̀t(x, a)

+
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qt(x, a)v̂t(x)−
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qt(x, a)
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v̂t(x
′)P (x′|x, a).

By the property of the occupancy measure, we have for all k = 0, 1, . . . , L− 1 that∑
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Since v̂t(x0) = v̂t(xL) = 0, we have∑
x,a

qt(x, a)δ(x, a|v̂t, ˆ̀t) = −η
∑
x,a

qt(x, a) ˆ̀t(x, a).

Combining the obtained expressions for the terms on the right-hand side of (1), we obtain the state-
ment of the lemma as

D (qt‖qt+1) ≤
η2

2
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t (x, a).
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