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A Parallel first order implementation using the ADMM method

The quadratic problem (P-QP) for finding the MAP estimate (repeated here for simplicity)

minimize
C

T∑
t=1

1

2
(ȳ(t)−Btc(t))TΣ−1

t (ȳ(t)−Btc(t)) + λTCGT1T

subject to CGT ≥ 0, c(1) ≥ 0,

(P-QP)

can be also expressed as

minimize
C,Z

T∑
t=1

1

2
(ȳ(t)−Btc(t))TΣ−1

t (ȳ(t)−Btc(t)) + λTZGT1T

subject to C = Z,CZT ≥ 0, z(1) ≥ 0.

Using the alternate direction method of multipliers (ADMM) (Boyd et al., 2011) we solve the
problem using the following iterative scheme until convergence:

Ck+1 = arg min
C

T∑
t=1

1

2
(ȳ(t)−Btc(t))TΣ−1

t (ȳ(t)−Btc(t)) + (ρ/2)‖C − Zk + Uk‖2

Zk+1 = arg min
Z:ZGT≥0,z(1)≥0

λTZGT1T + (ρ/2)‖Ck+1 − Z + Uk‖2

Uk+1 = Uk + Ck+1 − Zk+1,

with ρ > 0. Now for Ck+1 each c(t) can be estimated in parallel by solving a simple unconstrained
quadratic program. The Hessian of each of these programs is of the form Ht = ρId + BT

t Σ−1
t Bt

and therefore can be inverted in O(Nn2) time via the application of the Woodbury matrix identity
(remember that each Bt ∈ Rn×d). Similarly, the estimation of Zk+1 can be split into N parallel
programs each of which determines a row of Zk+1 with cost O(T ) via a plain log-barrier method,
similar to Vogelstein et al. (2010). Unlike the interior point method described in Sec. 2.1, the
ADMM method is a first order method and typically requires more iterations for convergence.
However, it may be a method of choice in the case where the spatial dimensionality is high and
parallel computing resources are available.
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B Parameter estimation details

B.1 Choice of number of neurons

To estimate the number of neurons we compute the vector σ of the singular values of F̂ , where F̂
is the solution of the NN-penalized problem (P-NN). We then construct the vector of consecutive
ratios a with a(i) = σ(i)/σ(i+ 1) and find the local minima of a. We pick N as the location of the
first local minimum of a such that the N chosen singular values capture a large fraction (e.g. 99%)
of ‖F̂‖2F . We have observed that this method in general works well in practice.

B.2 NMF step

We first note that the baseline vector b can be jointly estimated with the matrix A, since it can be
incorporated as an additional column of A that is multiplied with an additional row of C where
each entry is equal to 1, i.e., the spatiotemporal calcium matrix can be written as

F = [A, b]

[
C
1TT

]
.

Given A and b, the calcium traces C for all the neurons can be estimated by solving the (P-QP)
problem presented in Sec. 2. Given C, the log-likelihood of [A, b] can be expressed as

log(Y |A, b;C) ∝ −1

2
‖Σ−1/2B((CT ⊗ Id)vec(A) + (1T ⊗ Id)b− vec(Y ))‖2. (S-1)

To jointly estimate A and b we can maximize (S-1) subject to nonnegativity constrains A ≥ 0,
b ≥ 0. Additional regularizers can be introduced to A to penalize the size of each neuron (via an
l1-norm on A) or to smooth the shape of each neuron (via a spatial derivative penalty on each row
of A). Note that since A ≥ 0 and b ≥ 0, the l1-norm just becomes the sum of the elements and
therefore the problem remains a nonnegative least squares problem that can be solved efficiently
(e.g. with a log-barrier method).

To initialize the NMF procedure we start from the solution of the NN-penalized problem (P-NN)
and initialize the spatial component as follows:

1. Extract the “voxel” spikes from the solution of problem (P-NN)

Ŝ = F̂GT

2. Threshold the extracted spikes with a relatively high threshold (e.g. 90% quantile).
3. Perform k-means clustering of the spike vectors at each timestep, with N + 1 clusters and

discard the cluster with the centroid closest to zero.
4. Use the remaining clusters to initialize A0.
5. The baseline vector can be initialized by computing the remainder between the solution F̂

and the extracted spikes and taking the mean for each voxel.
A full presentation of these methods will be pursued elsewhere (Pnevmatikakis et al., 2013).

C Computing the statistical dimension

We first rewrite the function f for convenience:

f(C) =

{
(v ⊗ 1N )Tvec(C), (G⊗ Id)vec(C) ≥ 0

∞, otherwise
, and v = GT1T .
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We can express δ(D(f, C)) in terms of the SDs of the descent cones induced by the rows of C. Let
ci denote the i-th row of C (in column format) and define the function fr(c) = vTc, for Gc ≥ 0
(and fr(c) =∞ otherwise). Note that f(C) =

∑N
i=1 fr(ci). Now if D(fr, ci) is the descent cone of

fr at ci, since the sparsifying basis does not multiplex the spikes of the different neurons we have

D(f, C) = D(fr, c1)×D(fr, c2)× . . .×D(fr, cN ) =⇒ δ(D(f, C)) =

N∑
i=1

δ(D(fr, ci)), (S-2)

where the last equality follows from a property of the SD of direct product cones (Amelunxen et al.,
2013). Using the expression of the statistical dimension in terms of the subdifferential (7), we have

δ(D(fr, c)) = Eg inf
τ>0

min
u∈τ∂fr(c)

‖g − u‖2.

To characterize the subdifferential consider the function z : RT 7→ R with z(x) = 1TTx if x ≥ 0
(pointwise), and z(x) =∞ otherwise. Then if Ω is the set of entries where x is nonzero, and Ωc its
complement, we have

∂z(x) = w, with

{
w(j) = 1, j ∈ Ω,
w(j) ≤ 1, j ∈ Ωc .

For our case note that fr(c) = z(Gc). Let Ωi the set of spiketimes of neuron i and Ωc
i its

complement in the set [1, . . . , T ]. Using the relation for affine transformations of the subdifferential
∂fr(c) = GT∂z(Gc), the subdifferential at ci, ∂fr(ci), can be characterized as

∂fr(ci) = GTw, with

{
w(j) = 1, j ∈ Ωi

w(j) ≤ 1, j ∈ Ωc
i

(S-3)

Using (7) the SD equals the average value over all standard normal i.i.d. vectors g of the quadratic
programs

minimize
w,τ

‖g −GTw‖2, subject to: τ ≥ 0, {w(j) = τ, j ∈ Ωi}, {w(j) ≤ τ, j ∈ Ωc
i}. (SD-QP)

The statistical dimension can be estimated with a simple Monte Carlo simulation by averaging
the values of a series of quadratic programs. Since G is a bidiagonal matrix, each of the quadratic
programs can be solved in O(T ) time using a standard interior point method. Note that the
sparsity pattern here matters as opposed to the function z(x) where the expected distance from the
subdifferential cone is invariant under permutations.

D Symmetry of the statistical dimension in the binary case

The above analysis assumes that the spikes signal S takes arbitrary nonnegative values. In the case
where the spikes are restricted to take only binary {0, 1} values, a similar analysis can be carried:
By inserting the additional condition Gc ≤ 1, i.e., fr(ci) =∞ if Gc1 6≤ 1, the subdifferential ∂fr(ci)
is now given by

∂fr(ci) = GTw, with

{
w(j) ≥ 1, j ∈ Ωi

w(j) ≤ 1, j ∈ Ωc
i
. (S-4)

Note that (S-4) is very similar to (S-3) with the difference that w(j) ≥ 1 for j ∈ Ωi.
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When γ = 1 the objective function fr becomes a nonnegative total-variation norm. We now
prove the statistical dimension with is asymptotically symmetric. Let two binary spiking signals
s1, s2 that satisfy s1 = 1− s2 and also let Ω1,Ω2 the corresponding sets of spiketimes, and c1, c2

the corresponding calcium traces. It holds that Ω1 = [1, . . . , T ]\Ω2. Define C1, C2 the set of conic
constraints that these signals induce when computing the statistical dimension of the descent cones
(eq. (SD-QP)):

C1 = {w, τ : (τ ≥ 0) ∩ (w(j) ≥ τ, j ∈ Ω1) ∩ (w(j) ≤ τ, j ∈ Ω2)}
C2 = {w, τ : (τ ≥ 0) ∩ (w(j) ≥ τ, j ∈ Ω2) ∩ (w(j) ≤ τ, j ∈ Ω1)}

Now define the functions hi : RT 7→ R+ (i = 1, 2) as the value of the quadratic problems

hi(g) = min
w,τ∈Ci

‖g −GTw‖2. (S-5)

By making the change of variables w ← w− τ , the set of constraints and the value functions become
respectively

C̃1 = {w, τ : (τ ≥ 0) ∩ (w(j) ≥ 0, j ∈ Ω1) ∩ (w(j) ≤ 0, j ∈ Ω2)}
C̃2 = {w, τ : (τ ≥ 0) ∩ (w(j) ≥ 0, j ∈ Ω2) ∩ (w(j) ≤ 0, j ∈ Ω1)},

and the value functions of (S-5) can be expressed as

hi(g) = min
w,τ∈C̃i

‖g −GTw + τGT1T ‖2.

If γ = 1 we have GT1T = [0, 0, . . . , 0, 1]T and therefore we argue that the contribution of the term
τGT1T in the value function is of order O(1) and that we have

hi(g) = h̄i(g) +O(1),

where h̄i is defined as
h̄i(g) = min

w∈C̄i
‖g −GTw‖2,

with

C̄1 = {w : (w(j) ≥ 0, j ∈ Ω1) ∩ (w(j) ≤ 0, j ∈ Ω2)}
C̄2 = {w : (w(j) ≥ 0, j ∈ Ω2) ∩ (w(j) ≤ 0, j ∈ Ω1)}

Now note that C̄1 = −C̄2 and therefore h̄1(g) = h̄2(−g). Therefore

δ(D(fr, c1)) = Eg(h1(g)) = Eg(h̄1(g)) +O(1) = Eg(h̄2(g)) +O(1) = δ(D(fr, c2)) +O(1)

and in the asymptotic regime

lim
T→∞

1

T
δ(D(fr, c1)) = lim

T→∞

1

T
δ(D(fr, c2)),

which establishes our symmetry argument.
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E Counterexamples

As the mentioned in the main text, the condition (5)

nT ≥ δ(D(f, C0)) +O(
√
NT ), (S-6)

is exact only when B is a fully dense i.i.d. random matrix. Here we construct a counterexample
where the statistical dimension fails to provide a tight lower bound on the phase transition curve.
Consider again N neurons. Each neuron has Bernoulli spiking with probability of spike per timestep
k/T , but now assume that all the neurons are perfectly synchronized. From (S-2), the statistical
dimension δ(D(f, C)) can be decomposed as

δ(D(f, C)) =

N∑
i=1

δ(D(fr, ci)),

i.e., it does not depend on the spike correlations between the different neurons. However we expect
that the synchrony between the neurons will make the reconstruction harder. For example, when the
sensing matrix B is constant and the spikes have nonnegative values, then compressive acquisition
is impossible since the dense calcium signal will always projected in the same lower-dimensional
subspace spanned by the constant B, and thus it cannot be recovered.
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Figure S-1: Relation of the statistical dimension with the phase transition curve in a synchronized
firing case. For each panel: x-axis normalized sparsity k/T , y-axis undersampling index n/N . Left:
Nonnegative spikes. Right: Binary spikes. The statistical dimension (solid blue line) does not
provide a good estimate of the empirical PTC (purple dashed line) for this case.

In Fig. S-1 we consider a time-varying sensing matrix B and examine the cases where the spikes
take nonnegative values (left) and binary values (right). We again considered N = 40 and T = 50
and removed the last 10 timesteps from the calculation of the reconstruction error. We again varied
the probability of spiking k/T from 0 to 1 and the number of measurements per timestep n from
1 to N . In both cases we see that the statistical dimension fails to provide a tight bound on the
empirical PTC. However, note that compression is still possible for the nonnegative spikes case,
if the signal is very sparse, a result which indicates that occasional synchronies can be tolerated
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within the proposed compressive framework. In the binary case, compression is always possible,
a result that is expected from the relatively simple structure of binary signals, and is important
for our compressive calcium imaging framework, where the spiking signal is expect to be binary
(present or absent).

Note that the failure of the SD to capture the PTC should not be attributed to the decomposition
property (S-2) which ignores the correlations between the different neurons, but rather on the
block-diagonal structure of the sensing matrix B. If B is fully dense, then the SD coincides with the
PTC as is predicted in general result of Amelunxen et al. (2013) (data not shown). More research is
needed to understand the effects of restricting B to be a block-diagonal matrix.
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