
Supplementary Material

E Another bound for Simplex-PI when γ < 1 (Proof of
Theorem 5)

This second bound for Simplex-PI is a factor O(logn) better, but requires a slightly more careful
analysis.

At each iteration k, let sk be the state in which an action is switched. We have (by definition of
the algorithm):

Tπk+1vπk (sk)− vπk (sk) = max
π,s

Tπvπk (s)− vπk (s).

Starting with arguments similar to those for the contraction property of Simplex-PI, we have:

vπ∗ − vπk = (I − γPπ∗)
−1(Tπ∗vπk − vπk ) {Lemma 1}

≤ 1
1− γ max

s
Tπ∗vπk (s)− vπk (s) {‖(I − γPπ∗)

−1‖∞ = 1
1− γ and (I − γPπ∗)

−1 � 0}

≤ 1
1− γ (Tπk+1vπk (sk)− vπk (sk)), {By definition of sk}

which implies that

‖vπ∗ − vπk‖∞ ≤
1

1− γ (Tπk+1vπk (sk)− vπk (sk)). (5)

On the other hand, we have:

vπk+1 − vπk = (I − γPπk+1 )−1(Tπk+1vπk − vπk ) {Lemma 1}

≥ Tπk+1vπk − vπk , {(I − γPπk+1 )−1 � 0 and Tπk+1vπk − vπk ≥ 0}

which implies that

vπk+1 (sk)− vπk (sk) ≥ Tπk+1vπk (sk)− vπk (sk). (6)

Write ∆k = vπ∗ − vπk . From Equations (5) and (6), we deduce that:

∆k+1(sk) ≤ ∆k(sk)− (1− γ)‖∆k‖∞

=
(

1− (1− γ)‖∆k‖∞
∆k(sk)

)
∆k(sk).

This implies in particular that

∆k+1(sk) ≤ γ∆k(sk),

but also—since ∆k(sk) and ∆k+1(sk) are non-negative—that

‖∆k‖∞ ≤
1

1− γ∆k(sk).

Now, write nk the vector on the state space such that nk(s) is the number of times state s has been
switched until iteration k (including k). Since by Lemma 1 the sequence (∆k)k≥0 is non-increasing,
we have

‖∆k‖∞ ≤
1

1− γ∆k(sk)

≤ γnk−1(sk)

1− γ ∆0(sk)

≤ γnk−1(sk)

1− γ ‖∆0‖∞.
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At any iteration k, let s∗k = arg maxs nk−1(s). Since at each iteration k, one of the n component is
increased by 1, we necessarily have

nk−1(s∗k) ≥
⌊
k − 1
n

⌋
.

Write k∗ ≤ k − 1 the last iteration when the state s∗k was updated, such that we have

nk−1(s∗k) = nk∗−1(sk∗).

Since (‖∆k‖∞)k≥0 is non-increasing (using again Lemma 1), we have

‖∆k‖∞ ≤ ‖∆k∗‖∞

≤ γnk∗−1(sk∗ )

1− γ ‖∆0‖∞

= γnk−1(s∗
k

)

1− γ ‖∆0‖∞

≤ γb
k−1
n c

1− γ ‖∆0‖∞.

We are now ready to finish the proof. We have

‖vπ∗ − Tπkvπ∗‖∞ ≤ ‖∆k‖∞

≤ γb
k−1
n c

1− γ ‖∆0‖∞

≤ γb
k−1
n c

(1− γ)2 ‖vπ∗ − Tπ0vπ∗‖∞.

Using the relation n
⌊
k−1
n

⌋
≥ k−n and arguments similar to the previous proofs, we deduce that a

non-optimal action is eliminated after at most n
(
1 + 2

1−γ log 1
1−γ

)
iterations, and the result follows

from the fact that there are at most n(m− 1) non-optimal actions.

F A general bound for Simplex-PI (Proof of Theorem 7)

The proof we give here is strongly inspired by that for the deterministic case of [8]: the steps
(a series of lemmas) are similar. There are essentially two differences. First our arguments are
somewhat more direct in that we do not refer to linear programming. Second, it is more general:
for any policy π, we need to consider the set of transient states (respectively recurrent classes)
instead of the set of path states (respectively cycles).

For any policy π, write R(π) for the set of states that are recurrent for π. Recall that xπ =
(I − γPπT )−11. A useful corollary of Lemma 1 is that for any pair of policies π and π′,

1
T (vπ′ − vπ) = xπ′

T (Tπ′vπ − vπ). (7)

With some slight abuse of notation, we will write that s ∈ R(π) if there exists a recurrent class
R ∈ R(π) that contains s. We will repeatedly exploit Assumption 1, that we restate here for clarity:

∀s ∈ R(π), n

(1− γ)τr
≤ xπ(s) ≤ n

1− γ , (8)

∀s 6∈ R(π), xπ(s) ≤ τt. (9)

As mentioned, before, the proof is structured in two steps: first, we will show that recurrent classes
are created often; then we will show that significant progress is made every time a new recurrent
class appears.

F.1 Part 1: Recurrent classes are created often

Lemma 11. Suppose one moves from policy π to policy π′ without creating any recurrent class.
Let π† be the final policy before either a new recurrent class appears or the algorithm terminates.
Then

1
T (vπ† − vπ′) ≤

(
1− 1

nτt

)
1
T (vπ† − vπ).
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Proof. The arguments are similar to those for the proof of Theorem 4. On the one hand, we have:
1
T (vπ′ − vπ) ≥ 1

T (Tπ′vπ − vπ). (10)
On the other hand, we have
1
T (vπ† − vπ) = 1

T (I − γPπ†)
−1(Tπ†vπ − vπ)

= xTπ†(Tπ†vπ − vπ)

=
∑

s 6∈R(π†)

xπ†(s)(Tπ†vπ(s)− vπ(s)) +
∑

s∈R(π†)

xπ†(s)(Tπ†vπ(s)− vπ(s))

≤ nτt max
s 6∈R(π†)

Tπ†vπ(s)− vπ(s) + n2

1− γ max
s∈R(π†)

Tπ†vπ(s)− vπ(s). {Equations (8)-(9)}

Since by assumption cycles of π† are also cycles of π, we deduce that for all s ∈ R(π†), π†(s) = π(s),
so that maxs∈R(π†) Tπ†vπ(s)− vπ(s) = 0. Thus, the second term of the above r.h.s. is null and

1
T (vπ† − vπ) ≤ nτt max

s
Tπ†vπ(s)− vπ(s)

≤ nτt max
s
Tπ′vπ(s)− vπ(s) {max

s
Tπ′vπ(s) = max

s,π̃
Tπ̃vπ(s)}

= nτt1
T (Tπ′vπ − vπ). (11)

Combining Equations (10) and (11), we get:
1
T (vπ† − vπ′) = 1

T (vπ† − vπ)− 1T (vπ′ − vπ)

≤
(

1− 1
nτt

)
1
T (vπ† − vπ).

Lemma 12. While Simplex-PI does not create any recurrent class nor finishes:

• an action is eliminated from policies after at most dnτt log(nτt)e iterations;

• a recurrent class is broken after at most dnτt log(n2τt)e iterations.

Proof. Let π be the policy in some iteration, π† be the last policy before a new recurrent class
appears, and π′ any policy between π and π†. Since

0 ≤ 1T (vπ† − vπ) {vπ† ≥ vπ}

= xπ
T (vπ† − Tπvπ†) {Equation (7)}

=
∑

s 6∈R(π)

xπ(s)(vπ†(s)− Tπvπ†(s)) +
∑

C∈R(π)

∑
s∈C

xπ(s)(vπ†(s)− Tπvπ†(s)),

there must exist either a state s0 6∈ R(π) such that

xπ(s0)(vπ†(s0)− Tπvπ†(s0)) ≥ 1
n
xπ

T (vπ† − Tπvπ†) ≥ 0. (12)

or a recurrent class R0 such that∑
s∈R0

xπ(s)(vπ†(s)− Tπvπ†(s)) ≥
1
n
xπ

T (vπ† − Tπvπ†) ≥ 0. (13)

We consider these two cases separately below.

• case 1: Equation (12) holds for some s0 6∈ R(π). If π′(s0) = π(s0), then
1
T (vπ† − vπ′) ≥ vπ†(s0)− vπ′(s0) {vπ† ≥ vπ′}

= vπ†(s0)− Tπ′vπ′(s0) {vπ′ = Tπ′vπ′}
≥ vπ†(s0)− Tπ′vπ†(s0) {vπ† ≥ vπ′}
= vπ†(s0)− Tπvπ†(s0) {π(s0) = π′(s0)}

≥ 1
τt
xπ(s0)(vπ†(s0)− Tπvπ†(s0)) {Equation (9)}

≥ 1
nτt

xπ
T (vπ† − Tπvπ†) {Equation (12)}

= 1
nτt

1
T (vπ† − vπ). {Equation (7)}
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If there is no recurrent class creation, the contraction property given in Lemma 11 implies
that after k = dnτt log(nτt)e > log(nτt)

log 1
1− 1

nτt

iterations we have

1
T (vπ† − vπ′) <

1
nτt

1
T (vπ† − vπ),

and thus π′(s0) 6= π(s0).

• case 2: Equation (13) holds for some R0 ∈ R(π). Write T be the set of states that are
transient for π (formally, T = X\R(π)). For any subset Y of the state space X, write
PYπ for the stochastic matrix of which the ith row is equal to that of Pπ if i ∈ Y , and is 0
otherwise, and write 1Y the vectors of which the ith component is equal to 1 if i ∈ Y and
0 otherwise. Using the fact that PR0

π P Tπ = 0, one can first observe that

(I − γPR0
π )(I − γP Tπ ) = I − γ(PR0

π + P Tπ ),

from which we can deduce that

1T ∪R0
T (I − γP )−1 = 1T ∪R0

T (I − γ(PR0
π + P Tπ ))−1

= 1T ∪R0
T (I − γP Tπ )−1(I − γPR0

π )−1. (14)

Also, writing hT = (I − γP Tπ
T )−11T , that satisfies

hT = 1T + γP Tπ
T
hT ,

we can see that:

∀s ∈ R0, hT (s) = γ
∑
s′∈T

ps′s(π(s′))hT (s′), {s ∈ R0 ⇒ 1T (s) = 0} (15)

and thus:

(I − γP Tπ
T )−1

1T ∪R0 (s) = (I − γP Tπ
T )−1

1T (s) + 1 {P Tπ
T
1R0 = 0}

= hT (s) + 1

≤ γ
∑
s′∈T

ps′s(π(s′))hT (s′) + 1 {Equation (15)}

≤
∑
s′∈T

hT (s′) + 1

=
∑
s′∈T

xπ(s′) + 1 {∀s′ ∈ T , hT (s′) = xπ(s′)}

≤ (n− 1)τt + 1 {|T | ≤ (n− 1) and Equation (9)}

≤ nτt. {τt ≥ 1}
(16)
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Writing δ the vector that equals vπ† − Tπvπ† on R0 and that is null everywhere else, we
have∑
s∈R0

xπ(s)(vπ†(s)− Tπvπ†(s))

=
∑
s∈R0

[(I − γPTπ )−1
1](s)δ(s)

=
∑
s∈R0

[(I − γPTπ )−1
1T ∪R0 ](s)δ(s)

{
∀s ∈ R0, [(I − γPTπ )−1

1X\(T ∪R0)(s) = 0
}

=
∑
s

[(I − γPTπ )−1
1T ∪R0 ](s)δ(s) {∀s 6∈ R0, δ(s) = 0}

= 1T ∪R0
T (I − γPπ)−1δ

= 1T ∪R0
T (I − γP Tπ )−1(I − γPR0

π )−1δ {Equation (14)}

=
∑
s

[(I − γP Tπ
T )−1

1T ∪R0 ](s)[(I − γPR0
π )−1δ](s)

=
∑
s∈R0

[(I − γP Tπ
T )−1

1T ∪R0 ](s)[(I − γPR0
π )−1δ](s) {∀s 6∈ R0, δ(s) = 0}

=
∑
s∈R0

[(I − γP Tπ
T )−1

1T ∪R0 ](s)(vπ†(s)− vπ(s)) {Lemma 1}

≤ nτt1R0 (vπ† − vπ). {Equation (16)}
(17)

Now, one can deduce from this that if R0 is also a recurrent class of π′, which implies
1R0

T vπ = 1R0
T vπ′ , then

1
T (vπ† − vπ′) ≥ 1R0

T (vπ† − vπ′) {vπ† ≥ vπ′}

= 1R0
T (vπ† − vπ) {1R0

T vπ = 1R0
T vπ′}

≥ 1
nτt

∑
s∈R0

xπ(s)(vπ†(s)− Tπvπ†(s)) {Equation (17)}

≥ 1
n2τt

xπ
T (vπ† − Tπvπ†) {Equation (13)}

= 1
n2τt

1
T (vπ† − vπ). {Equation (7)}

If there is no recurrent class creation, the contraction property given in Lemma 11 implies
that after k = dnτt log(n2τt)e > log(n2τt)

log 1
1− 1

nτt

iterations we have

1
T (vπ† − vπ′) <

1
n2τt

1
T (vπ† − vπ),

and thus R0 cannot be a recurrent class of π′.

A direct consequence of the above result is Lemma 6 that we originally stated page 5, and that we
restate for clarity.
Lemma 6. After at most n

[
(m− 1)dnτt log(nτt)e+ dnτt log(n2τt)e

]
iterations, either Simplex-PI

finishes or a new recurrent class appears.

Proof. Before a recurrent class is created, at most n recurrent classes need to be broken and n(m−1)
actions to be eliminated, and the time required by these events is bounded thanks to the previous
lemma.
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F.2 Part 2: A new recurrent class implies a significant step towards the
optimal value

We now proceed to the second part of the proof, and begin by proving Lemma 7 (originally stated
page 6).
Lemma 7. Suppose Simplex-PI moves from π to π′ and that π′ involves a new recurrent class.
Then

1
T (vπ∗ − vπ′) ≤

(
1− 1

τr

)
1
T (vπ∗ − vπ).

Proof. Let s0 be the state such that π′(s) 6= π(s). On the one hand, since π′ contains a new
recurrent class R (necessarily containing s0), we have

1
T (vπ′ − vπ) = xπ′

T (Tπ′vπ − vπ) {Equation (7)}
= xπ′(s0)(Tπ′vπ(s0)− vπ(s0)) {Simplex-PI switches 1 action}

≥ n

(1− γ)τr
(Tπ′vπ(s0)− vπ(s0)). {Equation 8 with s0 ∈ R ⊂ R(π′)} (18)

On the other hand,
vπ∗ − vπ = (I − γPπ∗)

−1(Tπ∗vπ − vπ) {Lemma 1}

≤ 1
1− γ max

s
Tπ∗vπ(s)− vπ(s) {‖(I − γPπ∗)

−1‖∞ ≤
1

1− γ and (I − γPπ∗)
−1 � 0}

≤ 1
1− γ max

s
Tπ′vπ(s)− vπ(s) {max

s
Tπ′vπ(s) = max

s,π̃
Tπ̃vπ(s)}

= 1
1− γ (Tπ′vπ(s0)− vπ(s0)). {Simplex-PI switches 1 action}(19)

Combining these two observations, we obtain:
1
T (vπ∗ − vπ′) = 1

T (vπ∗ − vπ′)− 1
T (vπ′ − vπ)

≤ 1
T (vπ∗ − vπ′)−

n

(1− γ)τr
(Tπ′vπ(s0)− vπ(s0)) {Equation (18)}

≤ 1
T (vπ∗ − vπ′)−

n

τr
max
s
vπ∗(s)− vπ′(s) {Equation (19)}

≤
(

1− 1
τr

)
1
T (vπ∗ − vπ′). {∀x, 1Tx ≤ nmax

s
x(s)}

Lemma 14. While the algorithm does not terminate,

• some non-optimal action is eliminated from recurrent states after at most dτr log(nτr)e
recurrent class creations;

• some non-optimal action is eliminated from policies after at most dτr log(nτt)e recurrent
class creations.

Proof. Let π be the policy in some iteration and π′ be any policy between π and π∗. Let s0 =
arg maxs xπ(s)(vπ∗(s)− Tπvπ∗(s)). We have

xπ(s0)(vπ∗(s0)− Tπvπ∗(s0)) ≥ 1
n
xπ

T (vπ∗ − Tπvπ∗) {∀x, 1Tx ≤ nmax
s
x(s)}

= 1
T (vπ∗ − vπ). {Equation (7)} (20)

We now consider two cases.

• case 1: s0 6∈ R(π). If π′(s0) = π(s0), then
1
T (vπ∗ − vπ′) = xπ′

T (vπ∗ − Tπ′vπ∗) {Equation (7)}
≥ xπ′(s0)(vπ∗(s0)− Tπ′vπ∗(s0)) {vπ∗ ≥ Tπ′vπ∗}
≥ vπ∗(s0)− Tπ′vπ∗(s0) {xπ′(s0) ≥ 1}
= vπ∗(s0)− Tπvπ∗(s0) {π(s0) = π′(s0)}

≥ 1
τt
xπ(s0)(vπ∗(s0)− Tπvπ∗(s0)) {Equation (9)}

≥ 1
nτt

1
T (vπ∗ − vπ). {Equation (20)}
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After k = dτr lognτte > lognτt
log 1

1− 1
τ r

new recurrent classes are created, we have by the

contraction property of Lemma 7 that

1
T (vπ∗ − vπ′) <

1
nτt

1
T (vπ∗ − vπ).

This implies that π′(s0) 6= π(s0).

• case 2: s0 ∈ R(π). If π′(s0) = π(s0) and s0 ∈ R(π′), then

1
T (vπ∗ − vπ′) = xπ′

T (vπ∗ − Tπ′vπ∗) {Equation (7)}

=
∑
s

xπ′(s)(vπ∗(s)− Tπ′vπ∗(s))

≥
∑
s∈R0

xπ′(s)(vπ∗(s)− Tπ′vπ∗(s)) {vπ∗ ≥ Tπ′vπ∗}

≥ n

(1− γ)τr

∑
s∈R0

vπ∗(s)− Tπ′vπ∗(s) {Equation 8}

≥ n

(1− γ)τr
vπ∗(s0)− Tπ′vπ∗(s0) {vπ∗ ≥ Tπ′vπ∗}

= n

(1− γ)τr
vπ∗(s0)− Tπvπ∗(s0) {π(s0) = π′(s0)}

= 1
τr
xπ(s0)(vπ∗(s0)− Tπvπ∗(s0)) {xπ(s0) ≤ n

1− γ }

≥ 1
nτr

1
T (vπ∗ − vπ). {Equation (20)}

After k = dτr lognτre > lognτr
log 1

1− 1
τ r

new recurrent classes are created, we have by the

contraction property of Lemma 7 that

1
T (vπ∗ − vπ′) <

1
nτr

1
T (vπ∗ − vπ).

This implies that π′(s0) 6= π(s0) if s0 is recurrent for π′.

We are ready to conclude: At most, the n(m−1) non-optimal actions may need to be eliminated from
recurrent and transient states, requiring at most a total of n(m− 1)(dτr log(nτr)e+ dτr log(nτt)e)
recurrent classes creations. The result follows from the fact that each class creation requires at
most n

[
(m− 1)dnτt log(nτt)e+ dnτt log(n2τt)e

]
iterations.

G Cycle and recurrent classes creations for Howard’s PI (Proofs
of Lemmas 8 and 9)

Lemma 8. If the MDP is deterministic, after at most n iterations, either Howard’s PI finishes or
a new cycle appears.

Proof. Consider a sequence of l generated policies π1, · · · , πl from an initial policy π0 such that no
new cycle appears. By induction, we have

vπl − vπk = Tπlvπl − Tπlvπk−1 + Tπlvπk−1 − Tπkvπk−1 + Tπkvπk−1 − Tπkvπk {∀π, Tπvπ = vπ}

≤ γPπl(vπl − vπk−1 ) + γPπk (vπk−1 − vπk ) {Tπlvπk−1 ≤ Tπkvπk−1}

≤ γPπl(vπl − vπk−1 ). {Lemma 1 and Pπk � 0}

≤ (γPπl)
k(vπl − vπ0 ). {by induction on k}

(21)
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Since the MDP is deterministic and has n states, (Pπl)
n will only have non-zero values on columns

that correspond to R(πl). Furthermore, since no cycle is created, R(πl) ⊂ R(π0), which implies
that vπl(s) − vπ0 (s) = 0 for all s ∈ R(πl). As a consequence, we have (Pπl)

n(vπl − vπ0 ) = 0. By
Equation (21), this implies that vπl = vπn . If l > n, then the algorithm must have terminated.

Lemma 9. If the MDP satisfies Assumption 1, after at most nmdτt lognτte iterations, either
Howard’s PI finishes or a new recurrent class appears.

Proof. It can be seen that the proof of Lemma 6 also applies to Howard’s PI.

H A bound for Howard’s PI and Simplex-PI under
Assumption 2 (proof of Theorem 8)

We here consider that the state space is decomposed into 2 sets: T is the set of states that are
transient under all policies, and R is the set of states that are recurrent under all policies. From
this assumption, it can be seen that when running Howard’s PI or Simplex-PI, the values and
actions chosen on T have no influence on the evolution of the values and policies on R. So we
will study the convergence of both algorithms in two steps: We will first bound the number of
iterations to converge on R. We will then add the number of iterations for converging on T given
that convergence has occurred on R.

Convergence on the set R of recurrent states Without loss of generality, we consider
that the state space is only made of the set of recurrent states.

First consider Simplex-PI. If all states are recurrent, new recurrent classes are created at every
iteration, and Lemma 6 holds. Then, in a way similar to the proof of Lemma 14, it can be shown
that every dτr lognτre iterations, a non-optimal action can be eliminated. As there are at most
n(m−1) non-optimal actions, we deduce that Simplex-PI converges in at most n(m−1)dτr lognτre
iterations on R.

Now consider Howard’s PI. We can prove Lemma 10, that we restate for clarity.
Lemma 10. For an MDP satisfying Assumptions 1-2, suppose Howard’s PI moves from π to π′

and that π′ involves a new recurrent class. Then

1
T (vπ∗ − vπ′) ≤

(
1− 1

τr

)
1
T (vπ∗ − vπ).

Proof. In the case we focus on the convergence on the set R of recurrent states, new recurrent
classes are created at every iteration. So we will prove that the inequality holds for every k. On
the one hand, we have for all iterations k,

1
T (vπk+1 − vπk ) = xπk+1

T (Tπk+1vπk − vπk ) {Equation (7)}

≥ n

(1− γ)τr
1
T (Tπk+1vπk − vπk {Equation (8)}

≥ n

(1− γ)τr
‖Tπk+1vπk − vπk‖∞. {∀x ≥ 0,1Tx ≥ ‖x‖∞} (22)

On the other hand,
1
T (vπ∗ − vπk ) = xπ∗

T (Tπ∗vπk − vπk ) {Equation (7)}

≤ n

1− γ ‖Tπ∗vπk − vπk )‖∞ {
∑
i

xπ∗(i) ≤
n

1− γ }

≤ n

1− γ ‖Tπk+1vπk − vπk‖∞. (23)

By combining Equations (22) and (23), we obtain:

1
T (vπ∗ − vπk+1 ) = 1

T (vπ∗ − vπk )− 1T (vπk+1 − vπk )

≤
(

1− 1
τr

)
1
T (vπ∗ − vπk ).

Then, similarly to Simplex-PI, we can prove that after every dτr lognτre iterations a non-optimal
action must be eliminated. And as there are at most n(m−1) non-optimal actions, we deduce that
Howard’s PI converges in at most n(m− 1)dτr lognτre iterations on R.
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Convergence on the set T of transient states Consider now that convergence has oc-
curred on the recurrent states R. A simple variation of the proof of Lemma 6/Lemma 9 (where
we use the fact that we don’t need to consider the events where recurrent classes are broken since
recurrent classes do not evolve anymore) allows to show that the extra number of iterations to
converge on the transient states is n(m − 1)dτt lognτte for Howard’s PI and n2(m − 1)dτt lognτte
for Simplex-PI, and the result follows.
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