Efficient Optimization for Sparse Gaussian Process
Regression: Supplementary Material

Yanshuai Cao!, Marcus A. Brubaker?, David J. Fleet!, Aaron Hertzmann'-3

!Department of Computer Science 2TTI-Chicago 3Adobe Research
University of Toronto

This document is the supplementary material for the paper titled Efficient Optimization for Sparse
Gaussian Process Regression.

1 Incremental Cholesky QR factorization

The following algorithm is essentially the incremental partial Cholesky factorization with column
pivoting and the classical Graham-Schmidt factorization combined together.

K is the rank n full covariance matrix to be factorized, and K does not need to precomputed (taking
up O(n?) storage), but just need to return its diagonal and specific column when queried (a function
handle for example). If ¢ is supplied, the algorithm below operates with an additional twist allowing
the augmentation trick introduced in Sec. 3 of the paper, in which case the matrix L in the algorithm
is the augmented version L mentioned in the paper; and L[1 : n, :] is the un-augmented portion. Q,R
are the QR factorization of L. The procedure also returns two vectors, p and d. p is a permutation
of (1,2,...,n), and d stores the diagonal values of the residual matrix between the full K and
current partial Cholesky factorization. In our application to kernel covariance matrix, d is also the
point-wise variance that is not yet explained by (the factorization using) existing inducing points.
See post-conditions after the algorithm for formal relationships among various quantities.

For ease of description, explicit row pivoting is not performed (consistent with the description in
section 3.1 of the paper). Instead, the ordering of rows of L[1 : n,:] always stays in the original order
of data points (1,2,...,n), and we use p to keep track the permutation, and index into the rows of
L[1 : n,:]. The columns are pivoted explicitly during the algorithm. In practical implementation
however, we find the equivalent version with explicit row pivoting is slightly faster due to better
memory/cache locality.

Assuming that the inducing set Z,,, = [i1, ..., ik, ..., %] is known, to build the factors:

procedure CHOLQR_MSTEP(Z,,,, n, K, o)
p<+ [1,2,...,n]
d + diag(K)
if o is given then # Need to do the augmentation
L + zeros(n +m,m)
Q + zeros(n+m,m)
else
L + zeros(n,m)
Q + zeros(n,m)
end if
R < zeros(m,m)
fork=1— mdo
t < position of Z,,, [k] in p
p,L,Q, R,d + CholQR_OneStep(t, k,n, K,p, L, Q, R,d, o)
end for
returnp,L, Q,R, d

end procedure
procedure CHOLQR_ONESTEP(t, k, n, K, p, L, Q, R, d, o)

p[t] p[k‘} — p[k} [] t] # pivot the indices
% /
lnew <— K [(k + 1) } plk]]

Llp [<k+1>. nl K] = iy (bnew — L[k +1) 2] 1 (k= D] # Liplk], 12 (k= D))

d[plk : n]] < d[p[k : n]] — (L[p[k : n], k])."2 # end of partial Cholesky part
if o is given then # Need to do the augmentation

Lin+kk]+ o
end if
start of QR part
R[L: (k—=1),K < Q[:,1: (k=1)] L[, &]
Q[k] <= L[, k] — Q[:, 12 (k —1)] [(k—1), K]
Rlk, k] + [|QL:, k]|

Q[:, k] + Q[k]/R[k:, k]
return p,L, Q,R, d
end procedure

After the CholQR_mStep completes, the following post conditions hold true:
(1) p[l : m] has the same set of elements as Z,,;
(ii) L[p,1 : m]is lower trapezoidal, and it is the rank-m partial Cholesky factor of K[p, p];

(iii) L[p[l:m],1:m] is lower triangular, and it is the (complete) Cholesky factor of
K[p[1:m],p[l :m]};

(iv) d[p[l : m]] = 0 and d = diag (K —L[l:n,1:m]L[1:n,1: m}T)

(v) if the augmentation trick is required by supplying o, then L[1 : m,1 : m| = o1, xm, where
L, xm 1s the rank m identity matrix;

(vi) with or without the augmentation, L[:,1 : k] = Q[:,1: k|R[1 : k,1: k] Vke {1,...,m}.

2 Efficient Pivot Permutation and Removal

Given k < m, the following procedure permute pivot at position % to the right most column of L,
Q, and R, after when it would be ready to be removed.
procedure CHOLQR,PERMUTETORIGHT(k, m, n, p, L, Q, R, d, is_augmented)
fors=%k— (m—1)do
p[s],p[s + 1] < p[s + 1], p[s] # pivot the indices

QL R ¢ qr22(Lipls : (s + 1)), s : (s + 1)])
Llp[s : nl,s: (s +1)] < L[p[s : n],s: (s + 1)] x QL
Lip[s],s +1] <0
R[1:m,s: (s—i—l)]:R[l:ms (s+1)]*Q1
Q2,R2 < qr22(R][s : (s + 1) s+ 1))
R[s :(s+1) 1:m] < Q27 *R[(s+1),1:m]
Qlis: (s+1)] « Qlis: (s+1)] % Q2
R[s+1,8]«+0
if is,augmented then
rows corresponding to the augmented portion needs not be permuted, handle that
Qn+(s:(s+1),1:m]« Q1T xQ[n+ (s: (s+1)),1:m]
end if
end for
return p, L, Q,R, d
end procedure

where qr22 is a routine to compute the QR factorization of a 2 by 2 matrix. If i) - of the previous
section hold as pre-conditions for CholQR_PermuteToRight, then they also hold as post-conditions.

Finally, to remove pivot at the last position from the factorization:

procedure CHOLQR_REMOVELAST(m, n, p, L, Q, R, d)
d[p[m : n]] < d[p[m : n]] + (L[p[m : n],m])."2
L[:;m] <0
Q[:,m] + 0
R[1:m,m] + 0
Rim,1:m] <« 0
returnL, Q,R, d

end procedure

3 Variants

There are two slight variants to the main algorithm as mentioned in the paper, both of which differ
in the way information pivots are selected.

The first variant (OI) uses optimized information pivots as in the CSI algorithm instead of randomly
chosen ones. More specifically, each time, a new information pivot needs to be selected, we take the
one that has the maximum d values, where d defined in Sec. [T]of this supplementary material, is the
amount of prior variance at that point which is not yet explained by the existing factorization.

The second variant (AA) actively adapt the size of information pivot size. Initialized to a small size,
and given an upper bound z, this variant exponentially grows the information pivot set size whenever
a proposed candidate is rejected, and shrinks it linearly whenever one is accepted. The idea behind
the AA variant is the following: as in most optimizations, large progress should be easier to achieve
at the beginning comparing to later when closer to convergence, hence less computation is needed
to construct a careful approximation at early stages.

4 Experimental Details

To ensure fair comparison, all methods discussed in the discrete domain experiments (CholQR,
Random, Titsias’, and IVM) use the same code for computing the variational free energy ob-
jective function and its gradient. For the discrete inducing point selection part of IVM, we use
Lawrence’s IVM toolbox (from [dcs.shef.ac.uk/people/N.Lawrence/ivm). All meth-
ods except IVM have the same termination criteria: when failed to decrease objective function by
a threshold amount, or when exceeded the computational budget. For IVM, because of the incon-
sistent objectives issue, the objective function values highly fluctuate when alternating between the
discrete and continuous phases, as demonstrated in Fig. 3(d) and Fig. 3(3) of the paper. To ensure
termination at reasonable time, at any training epoch, we make IVM stop either when there is insuf-
ficient change in parameters (no change in inducing points and change in hyperparameters below a
predefined threshold), or if the training epoch is larger than 10, and the average relative change in
objective function value for the past 10 epochs is below a predefined threshold.

For the bio-informatics dataset, bindingdb.org has a large and growing amount of data cor-
responding to different targets and affinity measures. But at the time of this work, for fixed
target and affinity measure, the maximum amount of data we were able to obtain was 3854
sample points (Thrombin as target and dissociation constant (K ;) as affinity measure). To run
the various sparse GP methods on this dataset, we use a compound kernel consisting of many
different labeled and unlabeled graph kernels. Each kernel has its own data variance hyper-
parameter determining its relevance, which is learned from data during continuous hyper-parameter
optimization. The graph kernels are: connected k-node graphlet kernels with 3, 4, and 5 as
size of considered graphlets; labeled 3-node graphlet kernel; random walk kernel; labeled ran-
dom walk kernel; shortest path kernel; labeled graph shortest path kernel; labeled 10-step ran-
dom walk kernel; 2-step Weisfeiler-Lehman kernel; 2-step Weisfeiler-Lehman edge kernel; 2-step
Weisfeiler-Lehman shortest path delta kernel. All the graph kernels are computed using code from
mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/Graphkernels. Additionally, we
include two kernels that are redundant but useful to facilitate the automatic relevance learning for
all the methods. The first redundant kernel is simply the sum of all graph kernels mentioned above;
the second one is a constant identity, which is redundant because GP has a diagonal noise term.

dcs.shef.ac.uk/people/N.Lawrence/ivm
bindingdb.org
mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/Graphkernels

The redundancy makes the optimization less likely to be stuck in bad local minimum. In particular,
when trying to automatically learn the relevance of many kernels from data, bad initialization could
lead to local minimum where good kernels are dropped while bad ones are kept; this in turn makes
it impossible to select good inducing points, causing the optimization to terminate prematurely or to
run into numerical issues due to the degeneracy. The two extra redundant kernels allow us to handle
this problem without any modification to the learning algorithms or putting explicit prior over hyper-
parameters. The sum kernel forces all individual kernels to be active at the beginning until the data
variance (relevance) on this sum kernel is reduced to zero. In a way, it acts like a temporary weight
sharing that is automatically turned off by the optimization once the truly relevant kernels are found.
The second constant diagonal kernel reduces the problem of bad local minimum where optimization
quickly drives all data variance hyper-parameters to zero, and use very large data noise to explain
the observations. This is often the case where bad initial hyper-parameters and/or inducing points
give a GP model that cannot interpreting the data at all.

Most important, with the variational energy objective, hyper-parameter optimization for all the meth-
ods learned to reduce the data variance (relevance) on these two redundant kernels to zero after a
few training epochs; while without this technique, we obtain good solution in most cases, but falls
into degeneracy with some initialization.

As for the HoG dataset |'| because there are only three data variance hyperparameters (one for the
histogram intersection kernel corresponding to the image from each camera), we did not need to use
the redundant kernels in the compound kernel as in BindingDB. We choose to regress from HoG
features to the vertical position of the 19 joint markers, leading to 19 different regression problems.
In the experiment section of the paper, we present results on one of the 19 problems, results on the
other ones are similar and are shown in the next section.

S Addition Experimental Results

In the paper, we show results on one of the 19 regression problems (left wrist), here we present
the rest. The setup is exactly the same, with 50 random training/testing splits times 3 random
initialization for each regression problem. In each of the figures |1] to [18] that follow, the first two
sub-figures show the testing SMSE and SNLP scores averaged over all the 50 random splits and
3 random initialization, shown as function of the number of inducing points. The later two sub-
figures show, for one particular run, the testing SMSE and SNLP as function of actual training time.
Because the Titsias-16 and Titsias-256 are very slow, we only performed one run for them on each
of the regression problem with m = 32 inducing points, so we do not have aggregated results across
the 50 random splits to show in the first two sub-figures.

s
2,

-©-CholQR-216|
-&- VM

—5-CholQR—216] 3
-%-IVM 03f
Random

L
S
®

Random
-%-Titsias-16
-B-Titsias-512

Random
-%-Titsias-16
-B-Titsias—-51

-6-CholQR-216|
|-%-IVM

2

Testing SNLP
i
Testing SNLP

Testing SMSE

P
#

Hoge

L oL
» o

“s:\ ;}‘,&

by

B

0 1 2 3 4 o 1 2 3
56 512

>

32 64 128 256 512 16
number of inducing points (m)

Figure 1:

lobtained from |www.maths.lth.se/matematiklth/personal/sminchis/code/TGP.
html

4

32 64 128 2!
number of inducing points (m) Cumulative training time in secs (log scale) Cumulative training time in secs (log scale)

www.maths.lth.se/matematiklth/personal/sminchis/code/TGP.html
www.maths.lth.se/matematiklth/personal/sminchis/code/TGP.html

06| 03 -6-CholQR-216| -6-CholQR-216]
022 % IVM
0.8 3 025 0.2) Random
£ B w o p - Titsias-16
] h @ R 2 o.18¢" 2 08 -b-Titsias-512
A S 2 . % 2% % 0. itsias-!
£ % 2 > v T
g g 2016 £ 09 ; ;
g-12 8019 8o 8) | :
s 0.1 0.12 - | [
~1.4 oot \
) 0.1 11 !
0.05| B
16 32 64 128 256 512 16 2 64 128 256 512 10° ,1OTI, 1 ? . 10° 10° 10‘“ . ? . °
number of inducing points (m) number of inducing points (m) Cumulative training time in secs (log scale) Cumulative training time in secs (log scale)
Figure 2:
03 —&-CholaR 0.5¢ -6-CholQR-216| -0.3g) & CholQR_216]
—04 Ty [4 -&-IVM % IVM
.. 0.45| 2 w o 5‘ .| <-Random 04 Random
. —0.5| “ " D 04 -%-Titsias-16 9 _0.45 -%-Titsias-16
2 o = 2 04 AN 2 -b-Titsias-512 | 2 b Titsias_512
a 0 0.35] N > B ' o —0.5 T T
2-07] 2 S £ 0.35] \ | £ |)
2z ki 0.3 2 H \ 2 -0.55 Y H
=08 & = Tong [| H | i
025 03 y : ~056 3 L
0.9| v 0.2 \ | X '
% * ! 065, |
-1 0.15] 0.25
o T o T 3
16 32 64 128 256 512 16 32 64 128 256 2 10 10 107 0 . . 107 0
number of inducing points (m) number of inducing points (m) Cumulative training time in secs (log scale) Cumulative training time in secs (log scale)
Figure 3:
o9 =-CroaR : -.-.--[©-CholQR-z16) 4 ©-CholQR-216)
04 09 03 & IVM & IVM
05 Random -0.4 Random
. % w o4 W 0.45 - Titsias-16 = *-Titsias-16
2 -0.6f e 2 = -B- Titsias-512 F4 -B- Titsias-512
z i H . @ 0.4 T " a _05 T
207 %, 2, 9., 2 t . 2 : |
H b % 0.35 H !] | i
£ -08 A [g el H B e i |
03 ; : -0.6 i '
Y - : ' |
o oy i * H
-1 . \ A
025 [y -0.7] L,
16 32 64 128 256 512 g 32 64 128 256 10° 10' 10° ° 10° . .10 o
number of inducing points (m) number of inducing points (m) Cumulative training time in secs (log scale) Cumulative training time in secs (log scale)
Figure 4:
A N -©-CholQR-z16| -©-CholQR-z16|
Lol 0, 03 -2 IVM - IVM
E 0.35 w Random Random
-%-Titsias-16 -%-Titsias-16
038 @
E] 8 03 =02 -b-Titsias-512 b Titsias-512
g R 2% AN 2 02 ; ; i i
z ! % 02 N 3 4 B
© 12 . © e | | Yoy 3
g 015 5 : A
-1.4 = ** \ |
0.1
18! 0 T 3 Q 2 3
16 32 64 128 256 512 16 32 64 128 256 5 10 10 10 1 0
number of inducing points (m) number of inducing points (m) Cumulative training time in secs (log scale) Cumulative training time in secs (log scale)
Figure 5:
0.3 —oeon o Sl -6-CholQR-216] 4 -©-CholQR-z16)
04 % -#IVM -0 -&-IVM
Random Random
-0.5¢ o -0.45]
. wod s o -%-Titsias—16 o % Titsias-16
-0 % = -B-Titsias-512 Z 09 -b-Titsias-512
& _ B | | R
2 2o3 RN 2 | | E-0ss ; i
5 -08 2 K B ' K 5 H
& . e N e E 4 L -06 '
-0.9 % 02 o i ' .
. . S o -0.65) S
11 1 -0.7 i
16 2 64 12 256 512 0‘\6 32 64 128 256 612 10° ' 10 10° °] 10 ?
‘aumber of inducing points (m) umber of inducing points (m) Cumulative training time in secs (log scale) Cumulative training time in secs (log scale)
Figure 6:
- ‘r
0F=T osl : -6-CholQR-216] P -©-CholQR—216|
0.4 3 -04 -5 IVM
0.1 ~0.45] Random
3 : wo4 [o - Titsias-16
9 -0.6f e @ = o
H s H H Z 05 -b-Titsias-512
207 . 204 2 £2-055 ;
= 03|] - Z 7 | |
38 . 38 N 3 3 -06 L
-0.9| S “u = = " 4
4 . 02 B -0.65 * -
§ -0.7)]
-1 -
01 e
o T 3 Q
16 32 64 128 256 512 16 32 64 128 256 512 10 10° 1 0
number of inducing points (m) number of inducing points (m) Cumulative training time in secs (I

Figure 7:

log scale)

10"

10 3

1
Cumulative training time in secs (log scale)

~6-CholQR- 03P, -©-CholQR-2z16| -©-CholQR-2z16|
VM % IVM
Random Random
N - " k- Titsias—16 9y
g 4 % b Titsias-512 %
g " ? ; : 2
5 “ H | | H
312 3 PO 2
_1.4] ‘ B
16 32 64 128 256 512 16 32 64 128 256 512 10° .)) o 10° * _10‘ - 1C ? . 10° 10°
number of inducing points (m) number of inducing points (m) Cumulative training time in secs (log scale) Cumulative training time in secs (log scale)
Figure 8:
— - %
0.3 —-6-CholQR- . o -©-CholQR-z16| -©-CholQR-z16|
. 055, g ~
o e VM . 0.5 ; % IVM 035 VM
} b Random 05 Random ~0.4] Random

o 08t 1 045 ul0.45 ~#-Titsias-16 o ~*- Titsias-16

= 7] = -B- Titsias—! Z -0.45] -B- Titsias-!

2 o4) : 0.4 B o4 >Tltslas §12 F B-Titsias-512

£-07 kS gose 2 [2 -05 oo

7 : H Z L ! = ' .

3 Z 03 3 0.35 : : 3 055 : :

4 ° ' : -0. . i
08 N 0.25] - = | = > i
-0.9)] 0.2 Ty 0.3 *. -0.6

- 0.15 e 0.25 > -0.65| D
- 0 1 2 3 0 1 2 3
16 32 64 128 256 512 16 32 64 128 256 512 10 10 10 10 10 10 10° 10 10
number of inducing points (m) number of inducing points (m) Cumulative training time in secs (log scale) Cumulative training time in secs (log scale)
Figure 9:
ol) -©-CholQR-216] -©-CholQR—z16|

o = % IVM 21V

Py u\& 045 Random -04 Random

o T u] HeTisias-16 | & - Titsias-16
3 og . 2 2 o4 >-Titsias-512 | Z -0.45 -b-Titsias-512

z z e TN Lo

£-07] 2 03] £ l : £ | |

8 2 2 | : g -05 i f
" o8 . 2 0.25] £ 0.35 i ' g 1 :
B 0.2 H -0.55 |

0.9 N i
0.15 1 0.3 B, B
7‘16 64 128 256 512 16 32 64 128 256 512 10° . . 10° 10°
number of inducing points (m) number of inducing points (m) Cumulative training time in secs (log scale)

) 10 10°
Cumulative training time in secs (log scale)

Figure 10:

-6-CholQR—216] -©-CholQR—z16]
-3 IVM Y. iy
o % Random w Random Random
o w @ k- Titsias-16 S 045 #-Titsias-16
%‘ 0.6 g 3 »T.ts'asfmg z 0 - Titsias-512
2 ? My 2 i - i :
£ -07 - £ 0.3 S = \ i 2 05 \ !
g 2 L B R
_08 . 0.25 gy e
| -oss ;
o 02 .
019 o O 2 3 q 0 3
16 4. 12 256 512 16 32 64 128 256 512 10 107 . 107 0
number of inducing points (m) number of inducing points (m) Cumulative training time in secs (log scale) Cumulative training time in secs (log scale)
Figure 11:
07f el -6-CholQR-216| 02 -6-CholQR-z16]
- h -%IVM) -&-IVM
- N 0.65
03 o o4} e w Random Random
a T w o 4 - Titsias-16 % o2g 4-Titsias-16
2 o4 o s z 06 b Titsias-512 z b Titsias-512
2-05 % g g i ; 2 4 :
£ Foa £ 0.55 £ 03 .‘ :
© = o \ | ° i |
-0.6 [N o * |
. 05 1 L
o7 03 | -0.35 }
08 02 045 T 2 3 T 2 g
16 2 64 128 256 512 16 32 64 128 256 512 10 107 10 [107 10
number of inducing points (m) number of inducing points (m) Cumulative training time in secs (log scale) Cumulative training time in secs (log scale)
Figure 12:
o 06/ 055 -5-CholQR—z16] 03 -6-CholQR—z16]
o 8 41V | 4IVM
-04) 0.5/ N Random 0.4 Random
o 04 . w - Titsias—16 o, 0 - Titsias—16
2 = 2 -B-Titsias-512 z -B-Titsias-512
% -0.6] @ 04 v T T lg' T T
2 07 g : : Y09 : :
g - 8 . 3 | .
2 08 203 . \ A F,
09 L8 Sy *. . —0.6| Fooy
B 0.2 s oy |
-1
-11 0.1 o7
16 32 64 128 256 512 16 32 64 128 256 512
number of inducing points (m) number of inducing points (m)

10" 107 10° o'~ 10 10
Cumulative training time in secs (log scale) Cumulative training time in secs (log scale)

Figure 13:

0.45f . -6-CholQR-z16| e 2] -©-CholQR-z16)
. L % IVM -%-IVM
0.4 % 04 Random -0.45]
w - Titsias— o o
o W 0.35 2] *-Titsias-16 5 *-Titsias-16
El 2 % -B>Titsias-512 % -0.5 -B-Titsias-512
e 2 03 20.35 | Hoe : '
g 2 £ | H £ i
£ H . Z | V| 7 -055 i
& oz & (AR . :
02| 0.3 y -0.6 b
0.15|
1 _0.65
o 1 2 3 Q T
16 32 4 128 256 512 16 32 64 128 256 512 10 10" . :
number of inducing points (m) number of inducing points (m) Cumulative training time in secs (log scale) Cumulative training time in secs (log scale)
Figure 14:
Y ow ~ -©-CholQR-216| -©-CholQR-z16|
Y 045 045 -8 IVM -04
-0.5 h 0.4 % Random . 45‘
] *-Titslas—16 o, -0
(%2} =
508 Boas = o4 sesett| b Titsias 512 | Z
% % @ . : 2 05|
2-07) % g 03 2 i 2
7) G % 0.35] \ t a
2 ol 8 0.25] . @ V| 8-055
N *K I
09 02 03 : -0.6
» 0.15| b
16 32 64 128 256 512 16 32 64 128 256 512 10’ 10" 107 10° 100 10! 10°.
number of inducing points (m) number of inducing points (m) Cumulative training time in secs (log scale) Cumulative training time in secs (log scale)
Figure 15:
- 03 -6-CholQR-2z16| -0.2] -©-CholQR-216
- g, & IVM % IVM
04 - 0.6} Random
o .; w u °|*-Titsias-16 0 _0.25
3 @ b Titeine
Z’ -0.4f < 205 g >T|$s|as 512. % F
° o \ | =3
2-05 g < \ v S 03|
k] 3 04 7 0. | v 7 0
8 3 3 | | 3
" 0| = = SOV
07, 03 < b -0.35
-0.8] 02] 0 1 3 0
16 32 4 128 256 512 16 32 64 128 256 512 10 107 10)))
number of inducing points (m) number of inducing points (m) Cumulative training time in secs (log scale) Cumulative training time in secs (log scale)
Figure 16:
-0.6] —&-CholQR-z16] N -©-CholQR-z16| -0 -©-CholQR-z16|
% IVM 03f & IVM 07 % IVM
ol . Random 0.2 Random - Random
N s u | Titsias-16 % 08| - Titsias-16
g - 2 N = ' -B>Titsias-512 z -B>Titsias-512
% 3 02 k 2 : : &-09 : !
2.1 2 2015 + ' o .‘
3 3 0.15] 3 \ | e _ A 4
L & & Lo e :
- o1 s -1.1 B
0.1 | v *
1.6 ~ *
0.05 B -1.2
— 0 1 3 0 3
16 32 64 128 256 5 16 32 64 128 256 512 10 X X 10° 1 10 o 1
number of inducing points (m) number of inducing points (m) Cumulative training time in secs (log scale) Cumulative training time in secs (log scale)
Figure 17:
< R 0.85 i
01 08f e -6-CholQR-z16] -©-CholQR-216)
N - IVM % IVM
—0.2] 0.7 Random Random
N %, w [- Titsias-16 5 4 Titsias-16
3 03] Los e 2 rb'rlnsmsfsml z > Titsias-512
g s g . g | } 2 \
£ 04 o £ 05| N = | |] i
© o8 2 = = B o |
-0. < s | |
0.4 ¥ L \
056 03] b
16 32 64 128 256 512 16
number of inducing points (m)

32 64 128 256
number of inducing points (m)

5

2

Figure 18:

o' 10° 10°
Cumulative training time in secs (log scale)

T 3
[0
Cumulative training time in secs (log scale)

	Incremental Cholesky QR factorization
	Efficient Pivot Permutation and Removal
	Variants
	Experimental Details
	Addition Experimental Results

