
Manifold-based Similarity Adaptation

for Label Propagation

Masayuki Karasuyama and Hiroshi Mamitsuka
Bioionformatics Center, Institute for Chemical Research, Kyoto University, Japan

{karasuyama,mami}@kuicr.kyoto-u.ac.jp

Abstract

Label propagation is one of the state-of-the-art methods for semi-supervised learn-
ing, which estimates labels by propagating label information through a graph.
Label propagation assumes that data points (nodes) connected in a graph should
have similar labels. Consequently, the label estimation heavily depends on edge
weights in a graph which represent similarity of each node pair. We propose a
method for a graph to capture the manifold structure of input features using edge
weights parameterized by a similarity function. In this approach, edge weights
represent both similarity and local reconstruction weight simultaneously, both be-
ing reasonable for label propagation. For further justification, we provide analyt-
ical considerations including an interpretation as a cross-validation of a propaga-
tion model in the feature space, and an error analysis based on a low dimensional
manifold model. Experimental results demonstrated the effectiveness of our ap-
proach both in synthetic and real datasets.

1 Introduction

Graph-based learning algorithms have received considerable attention in machine learning commu-
nity. For example, label propagation (e.g., [1, 2]) is widely accepted as a state-of-the-art approach
for semi-supervised learning, in which node labels are estimated through the input graph structure.
A common important property of these graph-based approaches is that the manifold structure of the
input data can be captured by the graph. Their practical performance advantage has been demon-
strated in various application areas.

On the other hand, it is well-known that the accuracy of the graph-based methods highly depends on
the quality of the input graph (e.g., [1, 3–5]), which is typically generated from a set of numerical
input vectors (i.e., feature vectors). A general framework of graph-based learning can be represented
as the following three-step procedure:

Step 1: Generating graph edges from given data, where nodes of the generated graph correspond to
the instances of input data.

Step 2: Giving weights to the graph edges.
Step 3: Estimating node labels based on the generated graph, which is often represented as an

adjacency matrix.

In this paper, we focus on the second step in the three-step procedure; estimating edge weights for
the subsequent label estimation. Optimizing edge weights is difficult in semi-supervised learning,
because there are only a small number of labeled instances. Also this problem is important because
edge weights heavily affect final prediction accuracy of graph-based methods, while in reality rather
simple heuristics strategies have been employed.

There are two standard approaches for estimating edge weights: similarity function based- and
locally linear embedding (LLE) [6] based-approaches. Each of these two approaches has its own

1



disadvantage. The similarity based approaches use similarity functions, such as Gaussian kernel,
while most similarity functions have tuning parameters (such as the width parameter of Gaussian
kernel) that are in general difficult to be tuned. On the other hand, in LLE, the true underlying
manifold can be approximated by a graph which minimizes a local reconstruction error. LLE is
more sophisticated than the similarity-based approach, and LLE based graphs have been applied to
semi-supervised learning [5,7–9]. However LLE is noise-sensitive [10]. In addition, to avoid a kind
of degeneracy problem [11], LLE has to have additional tuning parameters.

Our approach is a similarity-based method, yet also captures the manifold structure of the input data;
we refer to our approach as adaptive edge weighting (AEW). In AEW, graph edges are determined
by a data adaptive manner in terms of both similarity and manifold structure. The objective function
in AEW is based on local reconstruction, by which estimated weights capture the manifold structure,
where each edge is parameterized as a similarity function of each node pair. Consequently, in spite
of its simplicity, AEW has the following three advantages:

• Compared to LLE based approaches, our formulation alleviates the problem of over-fitting
due to the parameterization of weights. In our experiments, we observed that AEW is robust
against noise of input data using synthetic data set, and we also show the performance
advantage of AEW in eight real-world datasets.

• Similarity based representation of edge weights is reasonable for label propagation because
transitions of labels are determined by those weights, and edge weights obtained by LLE
approaches may not represent node similarity.

• AEW does not have additional tuning parameters such as regularization parameters. Al-
though the number of edges in a graph cannot be determined by AEW, we show that per-
formance of AEW is robust against the number of edges compared to standard heuristics
and a LLE based approach.

We provide further justifications for our approach based on the ideas of feature propagation and local
linear approximation. Our objective function can be seen as a cross validation error of a propagation
model for feature vectors, which we call feature propagation. This allows us to interpret that AEW
optimizes graph weights through cross validation (for prediction) in the feature vector space instead
of label space, assuming that input feature vectors and given labels share the same local structure.
Another interpretation is provided through local linear approximation, by which we can analyze the
error of local reconstruction in the output (label) space under the assumption of low dimensional
manifold model.

2 Graph-based Semi-supervised Learning

In this paper we use label propagation, which is one of the state-of-the-art graph-based learning
algorithms, as the methods in the third step in the three-step procedure. Suppose that we have n
feature vectors X = {x1, . . . ,xn}, where xi ∈ R

p. An undirected graph G is generated from X ,
where each node (or vertex) corresponds to each data point xi. The graph G can be represented by
the adjacency matrix W ∈ R

n×n where (i, j)-element Wij is a weight of the edge between xi and
xj . The key idea of graph-based algorithms is so-called manifold assumption, in which instances
connected by large weights Wij on a graph have similar labels (meaning that labels smoothly change
on the graph).

For the adjacency matrix Wij , the following weighted k-nearest neighbor (k-NN) graph is com-
monly used in graph-based learning algorithms [1]:

Wij =

{

exp
(

−
∑p

d=1
(xid−xjd)

2

σ2

d

)

, j ∈ Ni or i ∈ Nj ,

0, otherwise,
(1)

where xid is the d-th element of xi, Ni is a set of indices of the k-NN of xi, and {σd}
p
d=1 is a set of

parameters. [1] shows this weighting can also be interpreted as the solution of the heat equation on
the graph.

From this adjacency matrix, the graph Laplacian can be defined by

L = D −W ,

2



where D is a diagonal matrix with the diagonal entry Dii =
∑

j Wij . Instead of L, normalized

variants of Laplacian such as L = I −D−1W or L = I −D−1/2WD−1/2 is also used, where
I ∈ R

n×n is the identity matrix.

Among several label propagation algorithms, we mainly use the formulation by [1], which is the
standard formulation of graph-based semi-supervised learning. Suppose that the first ℓ data points
in X are labeled by Y = {y1, . . . , yℓ}, where yi ∈ {1, . . . , c} and c is the number of classes. The
goal of label propagation is to predict the labels of unlabeled nodes {xℓ+1, . . . ,xn}. The scoring
matrix F gives an estimation of the label of xi by argmaxj Fij . Label propagation can be defined
as estimating F in such a way that score F smoothly changes on a given graph as well as it can
predict given labeled points. The following is standard formulation, which is called the harmonic
Gaussian field (HGF) model, of label propagation [1]:

min
F

trace
(

F⊤LF
)

subject to Fij = Yij , for i = 1, . . . , ℓ.

where Yij is the label matrix with Yij = 1 if xi is labeled as yi = j; otherwise, Yij = 0, In this
formulation, the scores for labeled nodes are fixed as constants. This formulation can be reduced
to linear systems, which can be solved efficiently, especially when Laplacian L has some sparse
structure.

3 Basic Framework of Proposed Approach

The performance of label propagation heavily depends on quality of an input graph. Our proposed
approach, adaptive edge weighting (AEW), optimizes edge weights for the graph-based learning
algorithms. We note that AEW is for the second step of the three step procedure and has nothing
to do with the first and third steps, meaning that any methods in the first and third steps can be
combined with AEW. In this paper we consider that the input graph is generated by k-NN graph (the
first step is based on k-NN), while we note that AEW can be applied to any types of graphs.

First of all, graph edges should satisfy the following conditions:

• Capturing the manifold structure of the input space.

• Representing similarity between two nodes.

These two conditions are closely related to manifold assumption of graph-based learning algorithms,
in which labels vary smoothly along the input manifold. Since the manifold structure of the input
data is unknown beforehand, the graph is used to approximate the manifold (the first condition).
Subsequent predictions are performed in such a way that labels smoothly change according to the
similarity structure provided by the graph (the second condition). Our algorithm simultaneously
pursues these two important aspects of the graph for the graph-based learning algorithms.

We define Wij as a similarity function of two nodes (1), using Gaussian kernel in this paper (Note:
other similarity functions can also be used). We estimate σd so that the graph represents manifold
structure of the input data by the following optimization problem:

min
{σd}

p

d=1

n
∑

i=1

‖xi −
1

Dii

∑

j∼i

Wijxj‖
2
2, (2)

where j ∼ i means that j is connected to i. This minimizes the reconstruction error by local
linear approximation, which captures the input manifold structure, in terms of the parameters of
the similarity function. We will describe the motivation and analytical properties of the objective
function in Section 4. We further describe advantages of this function over existing approaches
including well-known locally linear embedding (LLE) [6] based methods in Section 5, respectively.

To optimize (2), we can use any gradient-based algorithm such as steepest descent and conjugate
gradient (in the later experiments, we used steepest descent method). Due to the non-convexity
of the objective function, we cannot guarantee that solutions converge to the global optimal which
means that the solutions depend on the initial σd. In our experiments, we employed well-known
median heuristics (e.g., [12]) for setting initial values of σd (Section 6). Another possible strategy
is to use a number of different initial values for σd, which needs a high computational cost. The

3



gradient can be computed efficiently, due to the sparsity of the adjacency matrix. Since the number
of edges of a k-NN graph is O(nk), the derivative of adjacency matrix W can be calculated by
O(nkp). Then the entire derivative of the objective function can be calculated by O(nkp2). Note
that k often takes a small value such as k = 10.

4 Analytical Considerations

In Section 3, we defined our approach as the minimization of the local reconstruction error of input
features. We describe several interesting properties and interpretations of this definition.

4.1 Derivation from Feature Propagation

First, we show that our objective function can be interpreted as a cross-validation error of the HGF
model for the feature vector x on the graph. Let us divide a set of node indices {1, . . . , n} into a
training set T and a validation set V . Suppose that we try to predict x in the validation set {xi}i∈V

from the given training set {xi}i∈T and the adjacency matrix W . For this prediction problem, we
consider the HGF model for x:

min
X̂

trace
(

X̂
⊤
LX̂

)

subject to x̂ij = xij , for i ∈ T ,

where X = (x1,x2, . . .xn)
⊤, X̂ = (x̂1, x̂2, . . . x̂n)

⊤, and xij and x̂ij indicate (i, j)-th entries of

X and X̂ respectively. In this formulation, x̂i corresponds to a prediction for xi. Note that only
x̂i in the validation set V is regarded as free variables in the optimization problem because the other
{x̂i}i∈T is fixed at the observed values by the constraint. This can be interpreted as propagating
{xi}i∈T to predict {xi}i∈V . We call this process as feature propagation.

When we employ leave-one-out as the cross-validation of the feature propagation model, we obtain

n
∑

i=1

‖xi − x̂−i‖
2
2, (3)

where x̂−i is a prediction for xi with T = {1, . . . , i − 1, i + 1, . . . , n} and V = {i}. Due to the
local averaging property of HGF [1], we see x̂−i =

∑

j Wijxj/Dii, and then (3) is equivalent to our

objective function (2). From this equivalence, AEW can be interpreted as the parameter optimization
in graph weights of the HGF model for feature vectors through the leave-one-out cross-validation.
This also means that our framework estimates labels using the adjacency matrix W optimized in the
feature space instead of the output (label) space. Thus, if input features and labels share the same
adjacency matrix (i.e., sharing the same local structure), the minimization of the objective function
(2) should estimate the adjacency matrix which accurately propagates the labels of graph nodes.

4.2 Local Linear Approximation

The feature propagation model provides the interpretation of our approach as the optimization of the
adjacency matrix under the assumption that x and y can be reconstructed by the same adjacency ma-
trix. We here justify this assumption in a more formal way from a viewpoint of local reconstruction
with a lower dimensional manifold model.

As shown in [1], HGF can be regarded as local reconstruction methods, which means the prediction
can be represented as weighted local averages:

Fik =

∑

j WijFjk

Dii
for i = ℓ+ 1, . . . , n.

We show the relationship between the local reconstruction error in the feature space described by
our objective function (2) and the output space. For simplicity we consider the vector form of the
score function f ∈ R

n which can be considered as a special case of the score matrix F , and
discussions here can be applied to F . The same analysis can be approximately applied to other
graph learning methods such as local global consistency [2] because it has similar local averaging
form as the above, though we omitted here.

4



We assume the following manifold model for the input feature space, in which x is generated from
corresponding some lower dimensional variable τ ∈ R

q: x = g(τ ) + εx, where g : Rq → R
p

is a smooth function, and εx ∈ R
p represents noise. In this model, y is also represented by some

function form of τ : y = h(τ ) + εy , where h : Rq → R is a smooth function, and εy ∈ R represents
noise (for simplicity, we consider a continuous output rather than discrete labels). For this model,
the following theorem shows the relationship between the reconstruction error of the feature vector
x and the output y:

Theorem 1. Suppose xi can be approximated by its neighbors as follows

xi =
1

Dii

∑

j∼i

Wijxj + ei, (4)

where ei ∈ R
p represents an approximation error. Then, the same adjacency matrix reconstructs

the output yi ∈ R with the following error:

yi −
1

Dii

∑

j∼i

Wijyj = Jei +O(δτ i) +O(εx + εy), (5)

where J = ∂h(τ i)
∂τ⊤

(

∂g(τ i)
∂τ⊤

)+

with superscript + indicates pseudoinverse, and δτ i = maxj(‖τ i −

τ j‖
2
2).

See our supplementary material for the proof of this theorem. From (5), we can see that the recon-
struction error of yi consists of three terms. The first term includes the reconstruction error for xi

which is represented by ei, and the second term is the distance between τ i and {τ j}j∼i. These two
terms have a kind of trade-off relationship because we can reduce ei if we use a lot of data points
xj , but then δτ i would increase. The third term is the intrinsic noise which we cannot directly
control. In spite of its importance, this simple relationship has not been focused on in the context
of graph estimation for semi-supervised learning, in which a LLE based objective function has been
used without clear justification [5, 7–9].

A simple approach to exploit this theorem would be a regularization formulation, which can be a
minimization of a combination of the reconstruction error for x and a penalization term for distances
between data points connected by edges. Regularized LLE [5, 8, 13, 14] can be interpreted as one
realization of such an approach. However, in semi-supervised learning, selecting appropriate values
of the regularization parameter is difficult. We therefore optimize edge weights through parameters
of the similarity function, especially the bandwidth parameter of Gaussian similarity function σ. In
this approach, a very large bandwidth (giving large weights to distant data points) may cause a large
reconstruction error, while an extremely small bandwidth causes the problem of not giving enough
weights to reconstruct.

For symmetric normalized graph Laplacian, we can not apply Theorem 1 to our algorithm. See
supplementary material for modified version of Theorem 1 for normalized Laplacian. In the exper-
iments, we also report results for normalized Laplacian and show that our approach can improve
prediction accuracy as in the case of unnormalized Laplacian.

5 Related Topics

LLE [6] can also estimate graph edges based on a similar objective function, in which W is directly
optimized as a real valued matrix. This manner has been used in many methods for graph-based
semi-supervised learning and clustering [5, 7–9], but LLE is very noise-sensitive [10], and resulting
weights Wij cannot necessarily represent similarity between the corresponding nodes (i, j). For
example, for two nearly identical points xj1 and xj2 , both connecting to xi, it is not guaranteed
that Wij1 and Wij2 have similar values. To solve this problem, a regularization term can be in-
troduced [11], while it is not easy to optimize the regularization parameter for this term. On the
other hand, we optimize parameters of the similarity (kernel) function. This parameterized form of
edge weights can alleviate the over-fitting problem. Moreover, obviously, the optimized weights still
represent the node similarity.

Although several model selection approaches (such as cross-validation and marginal likelihood max-
imization) have been applied to optimizing graph edge weights by regarding them as usual hyper-

5



parameters in supervised learning [3, 4, 15], most of them need labeled instances and become un-
reliable under the cases with few labels. Another approach is optimizing some criterion designed
specifically for graph-based algorithms (e.g., [1, 16]). These criteria often have degenerate (trivial)
solutions for which heuristics are used to prevent, but the validity of those heuristics is not clear.
Compared to these approaches, our approach is more general and flexible for problem settings, be-
cause AEW is independent of the number of classes, the number of labels, and subsequent label
estimation algorithms. In addition, model selection based approaches are basically for the third
step in the three-step procedure, by which AEW can be combined with such methods, like that the
optimized graph by AEW can be used as the input graph of these methods.

Besides k-NN, there have been several methods generating a graph (edges) from the feature vectors
(e.g., [9, 17]). Our approach can also be applied to those graphs because AEW only optimizes
weights of edges. In our experiments, we used the edges of the k-NN graph as the initial graph of
AEW. We then observed that AEW is not sensitive to the choice of k, comparing with usual k-NN
graphs. This is because the Gaussian similarity value becomes small if xi and xj are not close
to each other to minimize the reconstruction error (2). In other words, redundant weights can be
reduced drastically, because in the Gaussian kernel, weights decay exponentially according to the
squared distance.

Metric learning is another approach to adapting similarity, while metric learning is not for graphs.
A standard method for incorporating graph information into metric learning is to use some graph-
based regularization, in which graph weights must be determined beforehand. For example, in [18],
a graph is generated by LLE, of which we already described the disadvantages. Another approach
is [19], which estimates a distance metric so that the k-NN graph in terms of the obtained metric
should reproduce a given graph. This approach is however not for semi-supervised learning, and it
is unclear if this approach works for semi-supervised settings. Overall metric learning is developed
from a different context from our setting, by which it has not been justified that metric learning can
be applied to label propagation.

6 Experiments

We evaluated the performance of our approach using synthetic and real-world datasets. We investi-
gated the performance of AEW using the harmonic Gaussian field (HGF) model. For comparison,
we used linear neighborhood propagation (LNP) [5], which generates a graph using a LLE based
objective function. LNP can have two regularization parameters, one of which is for the LLE pro-
cess (the first and second steps in the three-step procedure), and the other is for the label estimation
process (the third step in the three-step procedure). For the parameter in the LLE process, we used
the heuristics suggested by [11], and for the label propagation process, we chose the best parameter
value in terms of the test accuracy. HGF does not have such hyper-parameters. All results were
averaged over 30 runs with randomly sampled data points.

6.1 Synthetic datasets

We here use two datasets in Figure 1 having the same form, but Figure 1 (b) has several noisy data
points which may become bridge points (points connecting different classes [5]). In both cases, the
number of classes is 4 and each class has 100 data points (thus, n = 400).

Table 1 shows the error rates for the unlabeled nodes of HGF and LNP under 0-1 loss. For HGF,
we used the median heuristics to choose the parameter σd in similarity function (1), meaning that a
common σ (= σ1 = . . . = σp) is set as the median distance between all connected pairs of xi.The
symmetric normalized version of graph Laplacian was used. The optimization of AEW started from
the median σd. The results by AEW are shown in the column ‘AEW + HGF’ of Table 1. The number
of labeled nodes was 10 in each class (ℓ = 40, i.e., 10% of the entire datasets), and the number of
neighbors in the graphs was set as k = 10 or 20.

In Table 1, we see HGF with AEW achieved better prediction accuracies than the median heuristics
and LNP in all cases. Moreover, for both of datasets (a) and (b), AEW was most robust against
the change of the number of neighbors k. This is because σd is automatically adjusted in such
a way that the local reconstruction error is minimized and then weights for connections between

6








