
Optimal kernel choice for large-scale two-sample tests

Arthur Gretton,1,3 Bharath Sriperumbudur,1 Dino Sejdinovic,1 Heiko Strathmann2

1Gatsby Unit and 2CSD, CSML, UCL, UK; 3MPI for Intelligent Systems, Germany
{arthur.gretton,bharat.sv,dino.sejdinovic,heiko.strathmann}@gmail

Sivaraman Balakrishnan
LTI, CMU, USA

sbalakri@cs.cmu.edu

Massimiliano Pontil
CSD, CSML, UCL, UK

m.pontil@cs.ucl.ac.uk

Kenji Fukumizu
ISM, Japan

fukumizu@ism.ac.jp

Abstract

Given samples from distributions p and q, a two-sample test determines whether
to reject the null hypothesis that p = q, based on the value of a test statistic
measuring the distance between the samples. One choice of test statistic is the
maximum mean discrepancy (MMD), which is a distance between embeddings
of the probability distributions in a reproducing kernel Hilbert space. The kernel
used in obtaining these embeddings is critical in ensuring the test has high power,
and correctly distinguishes unlike distributions with high probability. A means of
parameter selection for the two-sample test based on the MMD is proposed. For a
given test level (an upper bound on the probability of making a Type I error), the
kernel is chosen so as to maximize the test power, and minimize the probability
of making a Type II error. The test statistic, test threshold, and optimization over
the kernel parameters are obtained with cost linear in the sample size. These
properties make the kernel selection and test procedures suited to data streams,
where the observations cannot all be stored in memory. In experiments, the new
kernel selection approach yields a more powerful test than earlier kernel selection
heuristics.

1 Introduction

The two sample problem addresses the question of whether two independent samples are drawn from
the same distribution. In the setting of statistical hypothesis testing, this corresponds to choosing
whether to reject the null hypothesis H0 that the generating distributions p and q are the same, vs.
the alternative hypothesis HA that distributions p and q are different, given a set of independent
observations drawn from each.

A number of recent approaches to two-sample testing have made use of mappings of the distribu-
tions to a reproducing kernel Hilbert space (RKHS); or have sought out RKHS functions with large
amplitude where the probability mass of p and q differs most [8, 10, 15, 17, 7]. The most straight-
forward test statistic is the norm of the difference between distribution embeddings, and is called
the maximum mean discrepancy (MMD). One difficulty in using this statistic in a hypothesis test,
however, is that the MMD depends on the choice of the kernel. If we are given a family of kernels,
we obtain a different value of the MMD for each member of the family, and indeed for any positive
definite linear combination of the kernels. When a radial basis function kernel (such as the Gaus-
sian kernel) is used, one simple choice is to set the kernel width to the median distance between
points in the aggregate sample [8, 7]. While this is certainly straightforward, it has no guarantees of
optimality. An alternative heuristic is to choose the kernel that maximizes the test statistic [15]: in
experiments, this was found to reliably outperform the median approach. Since the MMD returns
a smooth RKHS function that minimizes classification error under linear loss, then maximizing the
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MMD corresponds to minimizing this classification error under a smoothness constraint. If the
statistic is to be applied in hypothesis testing, however, then this choice of kernel does not explicitly
address the question of test performance.

We propose a new approach to kernel choice for hypothesis testing, which explicitly optimizes the
performance of the hypothesis test. Our kernel choice minimizes Type II error (the probability of
wrongly accepting H0 when p �= q), given an upper bound on Type I error (the probability of
wrongly rejecting H0 when p = q). This corresponds to optimizing the asymptotic relative effi-
ciency in the sense of Hodges and Lehmann [13, Ch. 10]. We address the case of the linear time
statistic in [7, Section 6], for which both the test statistic and the parameters of the null distribu-
tion can be computed in O(n), for sample size n. This has a higher variance at a given n than
the U-statistic estimate costing O(n2) used in [8, 7], since the latter is the minimum variance un-
biased estimator. Thus, we would use the quadratic time statistic in the “limited data, unlimited
time” scenario, as it extracts the most possible information from the data available. The linear time
statistic is used in the “unlimited data, limited time” scenario, since it is the cheapest statistic that
still incorporates each datapoint: it does not require the data to be stored, and is thus appropriate
for analyzing data streams. As a further consequence of the streaming data setting, we learn the
kernel parameter on a separate sample to the sample used in testing; i.e., unlike the classical testing
scenario, we use a training set to learn the kernel parameters. An advantage of this setting is that our
null distribution remains straightforward, and the test threshold can be computed without a costly
bootstrap procedure.

We begin our presentation in Section 2 with a review of the maximum mean discrepancy, its linear
time estimate, and the associated asymptotic distribution and test. In Section 3 we describe a cri-
terion for kernel choice to maximize the Hodges and Lehmann asymptotic relative efficiency. We
demonstrate the convergence of the empirical estimate of this criterion when the family of kernels is
a linear combination of base kernels (with non-negative coefficients), and of the kernel coefficients
themselves. In Section 4, we provide an optimization procedure to learn the kernel weights. Finally,
in Section 5, we present experiments, in which we compare our kernel selection strategy with the
approach of simply maximizing the test statistic subject to various constraints on the coefficients of
the linear combination; and with a cross-validation approach, which follows from the interpretation
of the MMD as a classifier. We observe that a principled kernel choice for testing outperforms com-
peting heuristics, including the previous best-performing heuristic in [15]. A Matlab implementation
is available at: www.gatsby.ucl.ac.uk/ ∼ gretton/adaptMMD/adaptMMD.htm

2 Maximum mean discrepancy, and a linear time estimate

We begin with a brief review of kernel methods, and of the maximum mean discrepancy [8, 7, 14].
We then describe the family of kernels over which we optimize, and the linear time estimate of the
MMD.

2.1 MMD for a family of kernels

Let Fk be a reproducing kernel Hilbert space (RKHS) defined on a topological space X with repro-
ducing kernel k, and p a Borel probability measure on X . The mean embedding of p in Fk is a unique
element µk(p) ∈ Fk such that Ex∼pf(x) = �f, µk(p)�Fk

for all f ∈ Fk [4]. By the Riesz rep-
resentation theorem, a sufficient condition for the existence of µk(p) is that k be Borel-measurable
and Ex∼pk

1/2(x, x) < ∞. We assume k is a bounded continuous function, hence this condition
holds for all Borel probability measures. The maximum mean discrepancy (MMD) between Borel
probability measures p and q is defined as the RKHS-distance between the mean embeddings of p
and q. An expression for the squared MMD is thus

ηk(p, q) = �µk(p)− µk(q)�
2
Fk

= Exx�k(x, x�) +Eyy�k(y, y�)− 2Exyk(x, y), (1)

where x, x� i.i.d.
∼ p and y, y�

i.i.d.
∼ q. By introducing

hk(x, x
�
, y, y

�) = k(x, x�) + k(y, y�)− k(x, y�)− k(x�
, y),

we can write
ηk(p, q) = Exx�yy�hk(x, x

�
, y, y

�) =: Evhk(v), (2)
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where we have defined the random vector v := [x, x�, y, y�]. If µk is an injective map, then k is said
to be a characteristic kernel, and the MMD is a metric on the space of Borel probability measures,
i.e., ηk (p, q) = 0 iff p = q [16]. The Gaussian kernels used in the present work are characteristic.

Our goal is to select a kernel for hypothesis testing from a particular family K of kernels, which we
now define. Let {ku}

d
u=1 be a set of positive definite functions ku : X × X → R. Let

K :=

�
k : k =

d�

u=1

βuku,

d�

u=1

βu = D, βu ≥ 0, ∀u ∈ {1, . . . , d}

�
(3)

for some D > 0, where the constraint on the sum of coefficients is needed for the consistency proof
(see Section 3). Each k ∈ K is associated uniquely with an RKHS Fk, and we assume the kernels
are bounded, |ku| ≤ K, ∀u ∈ {1, . . . , d}. The squared MMD becomes

ηk(p, q) = �µk(p)− µk(q)�
2
Fk

=
d�

u=1

βuηu(p, q),

where ηu(p, q) := Evhu(v). It is clear that if every kernel ku, u ∈ {1, . . . , d}, is characteristic and at
least one βu > 0, then k is characteristic. Where there is no ambiguity, we will write ηu := ηu(p, q)

and Ehu := Evhu(v). We denote h = (h1, h2, . . . , hd)
�
∈ Rd×1, β = (β1,β2, . . . ,βd)� ∈ Rd×1,

and η = (η1, η2, . . . , ηd)� ∈ Rd×1. With this notation, we may write

ηk(p, q) = E(β�
h) = β

�
η.

2.2 Empirical estimate of the MMD, asymptotic distribution, and test

We now describe an empirical estimate of the maximum mean discrepancy, given i.i.d. samples
X := {x1, . . . , xn} and Y := {y1, . . . , yn} from p and q, respectively. We use the linear time
estimate of [7, Section 6], for which both the test statistic and the parameters of the null distribution
can be computed in time O(n). This has a higher variance at a given n than a U-statistic estimate
costing O(n2), since the latter is the minimum variance unbiased estimator [13, Ch. 5]. That
said, it was observed experimentally in [7, Section 8.3] that the linear time statistic yields better
performance at a given computational cost than the quadratic time statistic, when sufficient data
are available (bearing in mind that consistent estimates of the null distribution in the latter case are
computationally demanding [9]). Moreover, the linear time statistic does not require the sample
to be stored in memory, and is thus suited to data streaming contexts, where a large number of
observations arrive in sequence.

The linear time estimate of ηk(p, q) is defined in [7, Lemma 14]: assuming for ease of notation that
n is even,

η̌k =
2

n

n/2�

i=1

hk(vi), (4)

where vi := [x2i−1, x2i, y2i−1, y2i] and hk(vi) := k(x2i−1, x2i)+k(y2i−1, y2i)−k(x2i−1, y2i)−
k(x2i, y2i−1); this arrangement of the samples ensures we get an expectation over independent
variables as in (2) with cost O(n). We use η̌k to denote the empirical statistic computed over the
samples being tested, to distinguish it from the training sample estimate η̂k used in selecting the
kernel. Given the family of kernels K in (3), this can be written η̌k = β�η̌, where we again use
the convention η̌ = (η̌1, η̌2, . . . , η̌d)� ∈ Rd×1. The statistic η̌k has expectation zero under the null
hypothesis H0 that p = q, and has positive expectation under the alternative hypothesis HA that
p �= q.

Since η̌k is a straightforward average of independent random variables, its asymptotic distribution
is given by the central limit theorem (e.g. [13, Section 1.9]). From [7, corollary 16], under the
assumption 0 < E(h2

k) < ∞ (which is true for bounded continuous k),

n
1/2 (η̌k − ηk(p, q))

D
→ N (0, 2σ2

k), (5)

where the factor of two arises since the average is over n/2 terms, and

σ
2
k = Evh

2
k(v)− [Ev(hk(v))]

2
. (6)
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Unlike the case of a quadratic time statistic, the null and alternative distributions differ only in
mean; by contrast, the quadratic time statistic has as its null distribution an infinite weighted sum of
χ2 variables [7, Section 5], and a Gaussian alternative distribution.

To obtain an estimate of the variance based on the samples X,Y , we will use an expression derived
from the U-statistic of [13, p. 173] (although as earlier, we will express this as a simple average so
as to compute it in linear time). The population variance can be written

σ
2
k = Evh

2
k(v)−Ev,v�(hk(v)hk(v

�)) =
1

2
Ev,v�(hk(v)− hk(v

�))2.

Expanding in terms of the kernel coefficients β, we get

σ
2
k := β

�
Qkβ,

where Qk := cov(h) is the covariance matrix of h. A linear time estimate for the variance is

σ̌
2
k = β

�
Q̌kβ, where

�
Q̌k

�
uu� =

4

n

n/4�

i=1

h∆,u(wi)h∆,u�(wi), (7)

and wi := [v2i−1, v2i],1 h∆,k(wi) := hk(v2i−1)− hk(v2i).

We now address the construction of a hypothesis test. We denote by Φ the CDF of a standard Normal
random variable N (0, 1), and by Φ−1 the inverse CDF. From (5), a test of asymptotic level α using
the statistic η̌k will have the threshold

tk,α = n
−1/2

σk

√
2Φ−1(1− α), (8)

bearing in mind the asymptotic distribution of the test statistic, and that ηk(p, p) = 0. This threshold
is computed empirically by replacing σk with its estimate σ̌k (computed using the data being tested),
which yields a test of the desired asymptotic level.

The asymptotic distribution (5) holds only when the kernel is fixed, and does not depend on the
sample X,Y . If the kernel were a function of the data, then a test would require large deviation
probabilities over the supremum of the Gaussian process indexed by the kernel parameters (e.g.
[1]). In practice, the threshold would be computed via a bootstrap procedure, which has a high
computational cost. Instead, we set aside a portion of the data to learn the kernel (the “training
data”), and use the remainder to construct a test using the learned kernel parameters.

3 Choice of kernel

The choice of kernel will affect both the test statistic itself, (4), and its asymptotic variance, (6).
Thus, we need to consider how these statistics determine the power of a test with a given level α (the
upper bound on the Type I error). We consider the case where p �= q. A Type II error occurs when
the random variable η̌k falls below the threshold tk,α defined in (8). The asymptotic probability of a
Type II error is therefore

P (η̌k < tk,α) = Φ

�
Φ−1(1− α)−

ηk(p, q)
√
n

σk

√
2

�
.

As Φ is monotonic, the Type II error probability will decrease as the ratio ηk(p, q)σ
−1
k increases.

Therefore, the kernel minimizing this error probability is

k∗ = arg sup
k∈K

ηk(p, q)σ
−1
k , (9)

with the associated test threshold tk∗,α. In practice, we do not have access to the population estimates
ηk(p, q) and σk, but only their empirical estimates η̂k, σ̂k from m pairs of training points (xi, yi)
(this training sample must be independent of the sample used to compute the test parameters η̌k, σ̌k).
We therefore estimate tk∗,α by a regularized empirical estimate tk̂∗,α

, where

k̂∗ = arg sup
k∈K

η̂k (σ̂k,λ)
−1

,

1This vector is the concatenation of two four-dimensional vectors, and has eight dimensions.
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and we define the regularized standard deviation σ̂k,λ =

�
β�

�
Q̂+ λmI

�
β =

�
σ̂2
k + λm�β�22.

The next theorem shows the convergence of supk∈K η̂k (σ̂k,λ)
−1 to supk∈K ηk(p, q)σ

−1
k , and of k̂∗

to k∗, for an appropriate schedule of decrease for λm with increasing m.
Theorem 1. Let K be defined as in (3). Assume supk∈K,x,y∈X |k(x, y)| < K and σk is bounded

away from zero. Then if λm = Θ
�
m−1/3

�
,

����sup
k∈K

η̂kσ̂
−1
k,λ − sup

k∈K
ηkσ

−1
k

���� = OP

�
m

−1/3
�

and k̂∗
P
→ k∗.

Proof. Recall from the definition of K that �β�1 = D, and that �β�2 ≤ �β�1 and �β�1 ≤
√
d �β�2

[11, Problem 3 p. 278], hence �β�2 ≥ Dd−1/2. We begin with the bound����sup
k∈K

η̂kσ̂
−1
k,λ − sup

k∈K
ηkσ

−1
k

���� ≤ sup
k∈K

���η̂kσ̂−1
k,λ − ηkσ

−1
k

���

≤ sup
k∈K

���η̂kσ̂−1
k,λ − ηkσ

−1
k,λ

���+ sup
k∈K

���ηkσ−1
k,λ − ηkσ

−1
k

���

≤ sup
k∈K

�
σ̂
2
k + �β�

2
2λm

�−1/2
|η̂k − ηk|+ sup

k∈K
ηk

����
σ̂k,λ − σk,λ

σ̂k,λσk,λ

����+ sup
k∈K

ηk

σk

�����
σ2
k,λ − σ2

k

σk,λ (σk,λ + σk)

�����

≤
C1

√
d

D
√
λm

sup
k∈K

|η̂k − ηk|+ sup
k∈K

ηk

�����
σ̂k,λ − σk,λ

(σ2
kσ̂

2
k + �β�22λm (σ2

k + σ̂2
k) + �β�22λ

2
m)

1/2

�����

+ sup
k∈K

ηk

σk

�
�β�22λm

�β�22λm + σ2
k

�

≤

√
d

D
√
λm

�
C1 sup

k∈K
|η̂k − ηk|+ C2 sup

k∈K
|σ̂k,λ − σk,λ|

�
+ C3D

2
λm,

where constants C1, C2, and C3 follow from the boundedness of σk and ηk. The the first result in the
theorem follows from supk∈K |η̂k − ηk| = OP (m−1/2) and supk∈K |σ̂k,λ − σk,λ| = OP (m−1/2),
which are proved using McDiarmid’s Theorem [12] and results from [3]: see Appendix A of the
supplementary material.

Convergence of k̂∗ to k∗: For k ∈ K defined in (3), we show in Section 4 that k̂∗ and k∗ are unique
optimizers of η̂kσ̂−1

k,λ and ηkσ
−1
k , respectively. Since supk∈K

η̂k

σ̂k,λ

P
→ supk∈K

ηk

σk
, the result follows

from [18, Corollary 3.2.3(i)].

We remark that other families of kernels may be worth considering, besides K. For instance, we
could use a family of RBF kernels with continuous bandwidth parameter θ ≥ 0. We return to this
point in the conclusions (Section 6).

4 Optimization procedure

We wish to select kernel k =
�d

u=1 β̂
∗
uku ∈ K that maximizes the ratio η̂k/σ̂k,λ. We perform

this optimization over training data, then use the resulting parameters β̂∗ to construct a hypothesis
test on the data to be tested (which must be independent of the training data, and drawn from the
same p, q). As discussed in Section 2.2, this gives us the test threshold without requiring a bootstrap

procedure. Recall from Sections 2.2 and 3 that η̂k = β�η̂, and σ̂k,λ =

�
β�

�
Q̂+ λmI

�
β,

where Q̂ is a linear-time empirical estimate of the covariance matrix cov(h). Since the objective

α(β; η̂, Q̂) :=
�
β�η̂

� �
β�

�
Q̂+ λmI

�
β

�−1/2
is a homogenous function of order zero in β, we

can omit the constraint �β�1 = D, and set

β̂
∗ = argmax

β�0
α(β; η̂, Q̂). (10)
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Figure 1: Left: Feature selection results, Type II error vs number of dimensions, average over 5000
trials, m = n = 104. Centre: 3 × 3 Gaussian grid, samples from p and q. Right: Gaussian grid
results, Type II error vs ε, the eigenvalue ratio for the covariance of the Gaussians in q; average over
1500 trials, m = n = 104. The asymptotic test level was α = 0.05 in both experiments. Error bars
give the 95% Wald confidence interval.

If η̂ has at least one positive entry, there exists β � 0 such that α(β; η̂, Q̂) > 0. Then clearly,
α(β̂∗; η̂, Q̂) > 0, so we can write β̂∗ = argmaxβ�0 α

2(β; η̂, Q̂). In this case, the problem (10)
becomes equivalent to a (convex) quadratic program with a unique solution, given by

min{β�
�
Q̂+ λmI

�
β : β�

η̂ = 1, β � 0}. (11)

Under the alternative hypothesis, we have ηu > 0, ∀u ∈ {1, . . . , d}, so the same rea-
soning can be applied to the population version of the optimization problem, i.e., to β∗ =
argmaxβ�0 α(β; η, cov(h)), which implies the optimizer β∗ is unique. In the case where no entries
in η̂ are positive, we obtain maximization of a quadratic form subject to a linear constraint,

max{β�
�
Q̂+ λmI

�
β : β�

η̂ = −1, β � 0}.

While this problem is somewhat more difficult to solve, in practice its exact solution is irrelevant to
the Type II error performance of the proposed two-sample test. Indeed, since all of the squared MMD
estimates calculated on the training data using each of the base kernels are negative, it is unlikely the
statistic computed on the data used for the test will exceed the (always positive) threshold. Therefore,
when no entries in η̂ are positive, we (arbitrarily) select a single base kernel ku with largest η̂u/σ̂u,λ.

The key component of the optimization procedure is the quadratic program in (11). This problem can
be solved by interior point methods, or, if the number of kernels d is large, we could use proximal-
gradient methods. In this case, an �-minimizer can be found in O(d2/

√
�) time. Therefore, the

overall computational cost of the proposed test is linear in the number of samples, and quadratic in
the number of kernels.

5 Experiments

We compared our kernel selection strategy to alternative approaches, with a focus on challenging
problems that benefit from careful kernel choice. In our first experiment, we investigated a synthetic
data set for which the best kernel in the family K of linear combinations in (3) outperforms the best
individual kernel from the set {ku}

d
u=1 . Here p was a zero mean Gaussian with unit covariance,

and q was a mixture of two Gaussians with equal weight, one with mean 0.5 in the first coordinate
and zero elsewhere, and the other with mean 0.5 in the second coordinate and zero elsewhere.

Our base kernel set {ku}
d
u=1 contained only d univariate kernels with fixed bandwidth (one for each

dimension): in other words, this was a feature selection problem. We used two kernel selection
strategies arising from our criterion in (9): opt - the kernel from the set K that maximizes the ratio
η̂k/σ̂k,λ, as described in Section 4, and max-ratio - the single base kernel ku with largest η̂u/σ̂u,λ.
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Figure 2: Left: amplitude modulated signals, four samples from each of p and q prior to noise being
added. Right: AM results, Type II error vs added noise, average over 5000 trials, m = n = 104.
The asymptotic test level was α = 0.05. Error bars give the 95% Wald confidence interval.

We used λn = 10−4 in both cases. An alternative kernel selection procedure is simply to maximize
the MMD on the training data, which is equivalent to minimizing the error in classifying p vs. q

under linear loss [15]. In this case, it is necessary to bound the norm of β, since the test statistic
can otherwise be increased without limit by rescaling the β entries. We employed two such kernel
selection strategies: max-mmd - a single base kernel ku that maximizes η̂u (as proposed in [15]),
and l2 - a kernel from the set K that maximizes η̂k subject to the constraint �β�2 ≤ 1 on the vector
of weights.

Our results are shown in Figure 1. We see that opt and l2 perform much better than max-ratio and
max-mmd, with the former each having large β̂∗ weights in both the relevant dimensions, whereas the
latter are permitted to choose only a single kernel. The performance advantage decreases as more
irrelevant dimensions are added. Also note that on these data, there is no statistically significant
difference between opt and l2, or between max-ratio and max-mmd.

Difficult problems in two-sample testing arise when the main data variation does not reflect the
difference between p and q; rather, this is encoded as perturbations at much smaller lengthscales. In
these cases, a good choice of kernel becomes crucial. Both remaining experiments are of this type.
In the second experiment, p and q were both grids of Gaussians in two dimensions, where p had
unit covariance matrices in each mixture component, and q was a grid of correlated Gaussians with
a ratio ε of largest to smallest covariance eigenvalues. A sample dataset is provided in Figure 1. The
testing problem becomes more difficult when the number of Gaussian centers in the grid increases,
and when ε → 1. In experiments, we used a five-by-five grid.

We compared opt, max-ratio, max-mmd, and l2, as well as an additional approach, xval, for which
we chose the best kernel from {ku}

d
u=1 by five-fold cross-validation, following [17]. In this case,

we learned a witness function on four fifths of the training data, and used it to evaluate the linear
loss on p vs q for the rest of the training data (see [7, Section 2.3] for the witness function definition,
and [15] for the classification interpretation of the MMD). We made repeated splits to obtain the
average validation error, and chose the kernel with the highest average MMD on the validation sets
(equivalently, the lowest average linear loss). This procedure has cost O(m2), and is much more
computationally demanding than the remaining approaches.

Our base kernels {ku}
d
u=1 in (3) were multivariate isotropic Gaussians with bandwidth varying

between 2−10 and 215, with a multiplicative step-size of 20.5, and we set λn = 10−5. Results
are plotted in Figure 1: opt and max-ratio are statistically indistinguishable, followed in order of
decreasing performance by xval, max-mmd, and l2. The median heuristic fails entirely, yielding
the 95% error expected under the null hypothesis. It is notable that the cross-validation approach
performs less well than our criterion, which suggests that a direct approach addressing the Type II
error is preferable to optimizing the classifier performance.

In our final experiment, the distributions p, q were short samples of amplitude modulated (AM)
signals, which were carrier sinusoids with amplitudes scaled by different audio signals for p and q.
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These signals took the form
y(t) = cos(ωct) (As(t) + oc) + n(t),

where y(t) is the AM signal at time t, s(t) is an audio signal, ωc is the frequency of the carrier
signal, A is an amplitude scaling parameter, oc is a constant offset, and n(t) is i.i.d. Gaussian noise
with standard deviation σε. The source audio signals were [5, Vol. 1, Track 2; Vol. 2 Track 17],
and had the same singer but different accompanying instruments. Both songs were normalized to
have unit standard deviation, to avoid a trivial distinction on the basis of sound volume. The audio
was sampled at 8kHz, the carrier was at 24kHz, and the resulting AM signals were sampled at
120kHz. Further settings were A = 0.5 and oc = 2. We extracted signal fragments of length 1000,
corresponding to a time duration of 8.3 × 10−3 seconds in the original audio. Our base kernels
{ku}

d
u=1 in (3) were multivariate isotropic Gaussians with bandwidth varying between 2−15 and

215, with a multiplicative step-size of 2, and we set λn = 10−5. Sample extracts from each source
and Type II error vs noise level σε are shown in Figure 2. Here max-ratio does best, with successively
decreasing performance by opt, max-mmd, l2, and median. We remark that in the second and third
experiments, simply choosing the kernel ku with largest ratio η̂u/σ̂u,λ does as well or better than
solving for β̂∗ in (11). The max-ratio strategy is thus recommended when a single best kernel exists
in the set {ku}

d
u=1, although it clearly fails when a linear combination of several kernels is needed

(as in the first experiment).

Further experiments are provided in the supplementary material. These include an empirical veri-
fication that the Type I error is close to the design parameter α, and that kernels are not chosen at
extreme values when the null hypothesis holds, additional AM experiments, and further synthetic
benchmarks.

6 Conclusions

We have proposed a criterion to explicitly optimize the Hodges and Lehmann asymptotic relative
efficiency for the kernel two-sample test: the kernel parameters are chosen to minimize the asymp-
totic Type II error at a given Type I error. In experiments using linear combinations of kernels, this
approach often performs significantly better than the simple strategy of choosing the kernel with
largest MMD (the previous best approach), or maximizing the MMD subject to an �2 constraint on
the kernel weights, and yields good performance even when the median heuristic fails completely.

A promising next step would be to optimize over the parameters of a single kernel (e.g., over the
bandwidth of an RBF kernel). This presents two challenges: first, in proving that a finite sample
estimate of the kernel selection criterion converges, which might be possible following [15]; and
second, in efficiently optimizing the criterion over the kernel parameter, where we could employ a
DC programming [2] or semi-infinite programming [6] approach.
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