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A.1 Proof of Theorem 5

By the translation invariance and the recursiveness of ERM, we have

ERMγ

[
L̃(π)

]
= ERMγ

[
N−1∑
i=0

ERMγ [Ci]

]
(40)

= ERMγ [C0] + ERMγ

[
N−1∑
i=1

ERMγ [Ci]

]
(41)

= ERMγ [C0] + ERMγ

[
ERMγ

[
N−1∑
i=1

ERMγ [Ci] | S1

]]
. (42)

In the right-hand side of (40), the inner ERMγ is with respect to fπ(·|Si); the outer is with respect
to pπ . In the right-hand side of (42), the first ERMγ is with respect to fπ(·|S0); the second is with
respect to pπ(·|S0); the third is with respect to pπ(·|Si) for i > 0; the last is with respect to fπ(·|Si).
By (34), the first term of (42) can be represented as follows:

ERMγ [C0] = max
fπ(·|S0)∈P(fπ0 (·|S0))

{
Efπ(·|S0)[C0]− γ H (fπ(·|S0)||fπ0 (·|S0))

}
. (43)

Analogously, the second term of (42) can be represented as follows:

ERMγ

[
ERMγ

[
N−1∑
i=1

ERMγ [Ci] | S1

]]

= max
pπ(·|S0)∈P(pπ0 (·|S0))

{
Epπ(·|S0)

[
ERMγ

[
N−1∑
i=1

ERMγ [Ci] | S1

]]
− γ H (pπ(·|S0)||pπ0 (·|S0))

}
(44)

Applying the above argument to the term inside Epπ(·|S0), we obtain, after simplification, that

ERMγ

[
L̃(π)

]
= max

pπ ∈ P1(p
π
0 )

fπ ∈ P1(f
π
0 )

{
Epπ,fπ

[
1∑
i=0

Ci

]

+Epπ

[
ERMγ

[
N−1∑
i=1

ERMγ [Ci | S1]

]
− γ

1∑
i=0

(H (fπ(·|Si)||fπ0 (·|Si)) +H (pπ(·|Si)||pπ0 (·|Si)))

]}
,

(45)

where pπ ∈ P`(pπ0 ) denotes that pπ(·|si) ∈ P(pπ0 (·|si)),∀si ∈ Si, i = 0, . . . , `. In establishing
(45), we exchange the expectation and the max operator, because expectation is monotonic (i.e.,
E[Y ] ≥ E[Z] if Y stochastically dominates Z).

Then we recursively apply the above process to the expression

ERMγ

[
N−1∑
i=`

ERMγ [Ci | S`]

]
(46)

for ` = 1, . . . , N − 1 to complete the proof of the theorem. In (39), notice that the summation of
H(pπ(·|Si)||pπ0 (·|Si)) is from i = 0 to i = N − 2, while H(fπ(·|Si)||fπ0 (·|Si)) is summed up to
i = N − 1. This is because, in the last step of the recursion, we have

ERMγ [ERMγ [CN−1 | SN−1]] (47)
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= ERMγ [CN−1 | SN−1] (48)

= max
fπ(·|SN−1)∈P(fπ0 (·|SN−1))

{
Efπ(·|SN−1)[CN−1 | SN−1]− γ H (fπ(·|SN−1)||fπ0 (·|SN−1))

}
.

(49)

In the right-hand side of (47), the outer ERMγ is with respect to pπ(·|SN−1). Because
ERMγ [CN−1 | SN−1] is independent of SN , we obtain (48), where ERMγ is with respect to
fπ(·|SN−1).

A.2 Remarks

A.2.1 Continuous cost

Throughout the paper, we assumed that the cost is discrete for simplicity, but all of our results carry
over to the case where the cost is continuous and its support is infinite by simply making both of the
following changes:

• replace ”probability mass function” with ”probability density function,” and
• replace “

∑
” with ”

∫
dx.”

In particular, (34) holds for the continuous case.

If the changes look nontrivial around (25)-(29), notice that, by letting

F (x|s, a) =

∫ x

−∞
f(y|s, a) dy (50)

and following the steps shown for the discrete case, we have

max
f∈Uf

∫
x∈X (s,a)

x f(x|s, a) dx = −
∫ x

−∞
x dg(1− F (x|s, a)) (51)

=

∫
x

∫ 1

1−F (x|s,a)

1

u
dH(u) dF (x|s, a), (52)

where the first equality follows from (24), and the second one follows from (20). Hence, we have

max
f∈Uf

∫
x∈X (s,a)

x f(x|s, a) dx =

∫ 1

0

1

u

∫ ∞
F−1(1−s)

x dF (x|s, a) dH(u), (53)

which gives (29).

A.2.2 Implications with respect to efficient algorithms

Existing algorithms such as those in [11] for robust MDPs iteratively solve ”inner” optimization
problems to consider the worst case. The knowledge of a relation to a risk-sensitive MDP allows
us to essentially replace the steps of solving ”inner” optimization problems with calculation of the
value of risk measures. Notice that the right-hand side of (34), i.e. the value of the optimal objective
value, would be very hard to calculate without the knowledge of the equivalence to its left-hand side.
The knowledge of the relations between risk-sensitive MDPs and robust MDPs allows us to identify
a class of robust MDPs whose optimal policy can be found without explicitly solving the ”inner”
optimization problems.
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