
Collaborative Gaussian Processes for Preference Learning –

Supplementary Material

Neil Houlsby
University of Cambridge

nmth2@cam.ac.uk

Jose Miguel Hernández-Lobato
University of Cambridge

jmh233@cam.ac.uk

Ferenc Huszár
University of Cambridge

fh277@cam.ac.uk

Zoubin Ghahramani
University of Cambridge
zoubin@eng.cam.ac.uk

1 The preference kernel

The mean function µpref and covariance function kpref of the GP prior on g can be computed from the mean
function µ and covariance function k of the GP on f as follows

kpref((xi,xj), (xk,xl)) = Cov[g(xi,xj), g(xk,xl)]

= Cov [(f(xi)− f(xj)) , (f(xk)− f(xl))]

= E [(f(xi)− f(xj)) · (f(xk)− f(xl))]− (µ(xi)− µ(xj)) (µ(xk)− µ(xl))

= k(xi,xk) + k(xj ,xl)− k(xi,xl)− k(xj ,xk) , (1)

and
µpref(xi,xj) = E [g([xi,xj])] = E [f(xi)− f(xj)] = µ(xi)− µ(xj) . (2)

2 Properties of the preference kernel

It is easy to show that the preference kernel kpref generates valid covariance matrices. Additionally, kpref
respects the anti-symmetry properties of preference learning. In particular, the prior correlation between
g(xi,xj) and g(xj ,xi) is

Corr(g(xi,xj), g(xj ,xi)) =
kpref((xi,xj), (xj ,xi))√

kpref((xi,xj), (xi,xj))
√
kpref((xj ,xi), (xj ,xi))

= −1 , (3)

where we have assumed µpref = 0 to simplify the derivations. This shows that the value of g at (xi,xj)
is perfectly anti-correlated with the value of g at (xj ,xi) under the prior. From this fact it can be shown
that all elements g of the reproducing kernel Hilbert space (RKHS) corresponding to kpref have the property
g(xi,xj) = −g(xj ,xi). Finally, the preference kernel ensures transitivity between pairwise item preferences.
In particular, since g(xi,xj) = f(xi) − f(xj), we have that if g(xi,xj) > 0 then f(xi) > f(xj) and if also
g(xj ,xk) > 0 then f(xj) > f(xk) and f(xi) > f(xk). Therefore, if g(xi,xj) > 0 and g(xj ,xk) > 0 then
g(xi,xk) > 0.

1

−5 0 5
0

1
h(Φ(·))

exp(−t2
π log(2)

)

0

5 · 10−3
difference

Figure 1: Analytic approximation to the binary entropy of the error function by a squared exponential. The
absolute error is always smaller than 3 · 10−3.

3 Taylor expansion on log h[Φ(x)]

The function log h[Φ(x)] can be approximated using

f(x) = f(0) +
f ′(0)x

1!
+
f ′′(0)x2

2!
+ . . . ,

f(x) = log h[Φ(x)] ,

f ′(x) = − 1

log 2

Φ′(x)

h[Φ(x)]
[log Φ(x)− log(1− Φ(x))] ,

f ′′(x) =
1

log 2

Φ′(x)2

h[Φ(x)]2
[log Φ(x)− log(1− Φ(x))]− 1

log 2

Φ′′(x)

h[Φ(x)]
[log Φ(x)− log(1− Φ(x))]−

1

log 2

Φ′(x)2

h[Φ(x)]

[
1

Φ(x)
+

1

(1− Φ(x)
)

]
.

∴ log h[Φ(x)] = 1− 1

π log 2
x2 +O(x4) .

Note that the x3 term will be zero because the function is even. By exponentiating, we obtain

h[Φ(x)] ≈ exp

(
− x2

π log 2

)
. (4)

Figure 1 demonstrates the striking accuracy of this approximation. The approximation error is never larger
than 0.3%.

4 Expectation propagation and variational Bayes

In this section, we describe in detail the proposed method for approximate inference in the multi-task
preference learning model. This method is based on the combination of expectation propagation Minka and
Lafferty (2002); van Gerven et al. (2010) and variational inference Stern et al. (2009). We first describe
the general version of the method. Finally, in Section 4.4, we describe the version which employs sparse
approximations to the covariance matrices Kusers and Kitems for speeding up computations.

The proposed EP method approximates the exact posterior distribution by the following parametric
distribution:

Q(G(D),W,H) =

[
U∏
u=1

D∏
d=1

N (wud|mw
u,d, v

w
u,d)

][
D∏
d=1

P∏
i=1

N (hd,i|mh
d,i, v

h
d,i)

]
 N∏
u=1

Mu∏
j=1

N (gu,zu,j
|mg

u,j , v
g
u,j)

 , (5)

2

where mw
u,d, v

w
u,d, m

h
d,i, v

h
d,i, m

g
u,j , and vgu,j are free parameters to be determined by EP. The joint distribution

of the model parameters and the data P(G(D),W,H,T(D),X, `) can be factorized into four factors f1, . . . , f4,
namely,

P(G(D),W,H,T(D),X, `) =

4∏
k=1

fa(G(D),W,H) , (6)

where f1(G(D),W,H) = P(T(D)|G(D)), f2(G(D),W,H) = P(G(D)|W,H), f3(G(D),W,H) = P(W|U)
and f4(G(D),W,H) = P(H|X, `). EP approximates each of these exact factors by approximate factors

f̂1(W,H,G(D)), . . . , f̂4(W,H,G(D)) that have the same functional form as (5), namely,

f̂a(G(D),W,H) =

[
U∏
u=1

D∏
d=1

N (wud|m̂a,w
u,d , v̂

a,w
u,d)

][
D∏
d=1

P∏
i=1

N (hd,i|m̂a,h
d,i , v̂

a,h
d,i)

]
 N∏
u=1

Mu∏
j=1

N (gu,zu,j
|m̂a,g

u,j , v̂
a,g
u,j)

 ŝa , (7)

where a = 1, . . . , 4 and m̂a,w
u,d , v̂a,wu,d , m̂a,h

d,i , v̂a,hd,i , m̂a,g
u,j , v̂

a,g
u,j and ŝa are free parameters to be determined by

EP. The posterior approximation Q(w,H,G(D)) is obtained as the normalized product of the approximate

factors f̂1, . . . , f̂4, that is,

Q(W,H,G(D)) ∝ f̂1(W,H,G(D)) · · · f̂4(W,H,G(D)) . (8)

The first step of EP is to initialize all the approximate factors f̂1, . . . , f̂4 and the posterior approximation
Q to be uniform. In particular, mw

u,d = mh
d,i = mg

u,j = m̂w,a
u,d = m̂a,h

d,i = m̂g,a
u,j = 0 and vwu,d = vhd,i = vgu,j =

v̂a,wu,d = v̂a,hd,i = v̂a,hu,j = ∞ for a = 1, . . . , 4, u = 1, . . . , U , d = 1, . . . , D, i = 1, . . . , P and j = 1, . . . ,Mu.
After that, EP refines the parameters of the approximate factors by iteratively minimizing the Kullback-
Leibler (KL) divergence between Q\a(W,H,G(D))fa(W,H,G(D)) and Q\a(W,H,G(D))f̂a(W,H,G(D)),

for a = 1, . . . , 4, where Q\a is the ratio between Q and f̂a. That is, EP iteratively minimizes

DKL(Q\afa‖Q\af̂a) =

∫ [
Q\afa log

Q\afa

Q\af̂a
+Q\af̂a −Q\afa

]
dW dH dG(D) (9)

with respect to f̂a, for a = 1, . . . , 4. The arguments to Q\afa and Q\af̂a have been omitted in the right-hand
side of (9) to improve the readability of the expression. However, the minimization of (9) does not perform

well when we have to refine the parameters of f̂2. The reason for this is that the corresponding exact factor
f2 (equation (7) in the main document) is invariant to simultaneous changes in sign, scalings, or rotations of
the entries of W and H. This non-identifiability in the latent space spanned by W and H originates multiple
modes in the distribution Q\2f2. The minimization of the direct version of the KL divergence results in an
approximation that averages across all of the modes, leading to poor predictive performance. We solve this
problem by following an approach similar to the one described by Stern et al. (2009). Instead of minimizing

KL(Q\2f2‖Q\2f̂2), we refine f̂2 by minimizing the reversed version of the KL divergence, that is, we minimize

KL(Q\2f̂2‖Q\2f2) with respect to the parameters of f̂2. The reversed version of the divergence has mode
seeking properties (Bishop, 2007) and tends to approximate only a single mode of the target distribution,
leading to better predictive accuracy.

The EP algorithm iteratively refines the approximate factors until convergence. We assume the algorithm
has converged when the absolute value of the change in the parameters mg

u,i of Q, where u = 1, . . . , U and

i = 1, . . . ,Mu, is less than a threshold δ = 10−2 between two consecutive cycles of EP, where a cycle consists
in the sequential update of all the approximate factors. However, convergence is not guaranteed and EP
may end up oscillating without ever stopping (Minka, 2001). This undesirable behavior can be prevented by

3

damping the EP updates (Minka and Lafferty, 2002). Let f̂newa denote the value of the approximate factor
that minimizes the Kullback-Leibler divergence. Damping consists in using

f̂damp
a =

[
f̂newa

]ε [
f̂a

](1−ε)
, (10)

instead of f̂newa for the update of each approximate factor a = 1, . . . , 4. The quantity f̂a represents in (10)
the factor before the update. The parameter ε ∈ [0, 1] controls the amount of damping. The original EP

update (that is, without damping) is recovered in the limit ε = 1. For ε = 0, the approximate factor f̂a is not
modified. To improve the converge of EP, we use a damping scheme with a parameter ε that is initialized
to 1 and then progressively annealed as recommended by Hernández-Lobato (2010). After each iteration of
EP, the value of this parameter is multiplied by a constant k < 1. The value selected for k is k = 0.95. In
the experiments performed, EP performs on average about 50 iterations.

4.1 The EP predictive distribution

EP can also approximate the predictive distribution, given by equation (11) in the main manuscript. For
this, we replace the exact posterior with the EP approximation Q. In this way, we obtain

P(tu,P+1|T(D),X, `, pP+1) ≈ Φ
[
tu,P+1m

g
u,P+1(vgu,P+1 + 1)−

1
2

]
, (11)

where

mg
u,P+1 =

D∑
d=1

mw
u,dm

h
d,P+1 , (12)

vgu,P+1 =

D∑
d=1

[mw
u,d]

2vhd,P+1 +

D∑
d=1

vwu,d[m
h
d,P+1]2 +

D∑
d=1

vwu,dv
h
d,P+1 (13)

and mh
d,P+1 and vhd,P+1 for d = 1, . . . , D are given by

mh
d,P+1 = kT

?

[
Kitems + diag[v̂h,2d]

]−1
m̂h,2
d , (14)

vhd,P+1 = k? − kT
?

[
Kitems + diag[v̂h,2d]

]−1
k? , (15)

where k? is the prior variance of hd(xα(P+1),xβ(P+1)), k? is a P -dimensional vector that contains the prior
covariances between hd(xα(P+1),xβ(P+1)) and hd(xα(1),xβ(1)), . . . , hd(xα(P),xβ(P)) for d = 1, . . . , D, the
function diag(·) applied to a vector returns a diagonal matrix with that vector in its diagonal and the vectors

m̂h,2
d and v̂h,2d are given by m̂h,2

d = (m̂h,2
1,d , . . . , m̂

h,2
P,d)

T and v̂h,2d = (v̂h,21,d , . . . , v̂
h,2
P,d)

T.

4.2 The EP update operations

In this section we describe the EP updates for refining the approximate factors f̂1, . . . , f̂4. For the sake of
clarity, we only include the update rules with no damping (ε = 1). Incorporating the effect of damping
in these operations is straightforward. With damping, the natural parameters of the approximate factors
become a convex combination of the natural parameters before and after the update with no damping

[v̂w,au,d]−1damp = ε[v̂w,au,d]−1new + (1− ε)[v̂w,au,d]−1old , (16)

[m̂w,a
u,d]damp[v̂w,au,d]−1damp = ε[m̂w,a

u,d]new[v̂w,au,d]−1new + (1− ε)[m̂w,a
u,d]old[v̂w,au,d]−1old , (17)

[v̂h,ad,i]−1damp = ε[v̂h,ad,i]−1new + (1− ε)[v̂h,ad,i]−1old , (18)

[m̂h,a
d,i]damp[v̂h,ad,i]−1damp = ε[m̂h,a

d,i]new[v̂h,ad,i]−1new + (1− ε)[m̂h,a
d,i]old[v̂h,ad,i]−1old , (19)

[v̂g,au,j]
−1
damp = ε[v̂g,au,j]

−1
new + (1− ε)[v̂g,au,j]

−1
old , (20)

[m̂g,a
d,j]damp[v̂g,au,j]

−1
damp = ε[m̂g,a

u,j]new[v̂g,au,j]
−1
new + (1− ε)[m̂g,a

u,j]old[v̂g,au,j]
−1
old , (21)

4

where u = 1, . . . , U , d = 1, . . . , D, i = 1, . . . , P and j = 1, . . . ,Mu. The subscript new denotes the value of
the parameter given by the full EP update operation with no damping. The subscript damp denotes the
parameter value given by the damped update rule. The subscript old refers to the value of the parameter
before the EP update. The updates for the parameters ŝ1, . . . , ŝ4 are not damped. These parameters are
initialized to 1 and are only updated once the EP algorithm has converged.

The first factor to be refined is f̂4. The update operations that minimize KL(Q\4f4‖Q\4f̂4) are given by

[v̂h,4d,i]new =
{

[vhd,i]
−1
new − [v̂h,2d,i]−1old

}−1
, (22)

[m̂h,4
d,i]new = [v̂h,4d,i]new

{
[mh

d,i]new[vhd,i]
−1
new − [m̂h,4

d,i]old[v̂h,4d,i]−1old

}−1
, (23)

for d = 1, . . . , D and i = 1, . . . , P , where the subscripts new and old denote the parameter value after and
before the update, respectively, and the parameters [vhd,i]new and [mh

d,i]new are the i-th entries in the vectors

[vhd]new and [mh
d]new given by

[vhd]new = diag
[
Σh
d

]
, (24)

[mh
d]new = Σh

ddiag[v̂h,2d]−1m̂h,2
d , (25)

where [Σh
d]−1 = K−1items + diag[v̂h,2d]−1 and the vectors m̂h,2

d and v̂h,2d are P -dimensional vectors given by

m̂h,2
d = (m̂h,2

1,d , . . . , m̂
h,2
P,d)

T and v̂h,2d = (v̂h,21,d , . . . , v̂
h,2
P,d)

T.

The second factor to be refined by EP is f̂3. The update operations that minimize KL(Q\3f3‖Q\3f̂3) are

[v̂w,3u,d]new =
{

[vwu,d]
−1
new − [v̂w,2u,d]−1old

}−1
, (26)

[m̂w,3
u,d]new = [v̂w,3u,d]new

{
[mw

u,d]new[vwu,d]
−1
new − [m̂w,3

u,d]old[v̂w,3u,d]−1old

}−1
, (27)

for u = 1, . . . , U and d = 1, . . . , D, where the parameters [vwu,d]new and [mw
u,d]new are the u-th entries in the

vectors [vwd]new and [mw
d]new given by

[vwd]new = diag [Σw
d] , (28)

[mw
d]new = Σw

d diag[v̂w,2d]−1m̂w,2
d , (29)

where [Σw
d]−1 = K−1items+diag[v̂w,2d]−1 and the vectors m̂w,2

d and v̂w,2d are given by m̂w,2
d = (m̂w,2

1,d , . . . , m̂
w,2
U,d)T

and v̂w,2d = (v̂w,21,d , . . . , v̂
w,2
U,d)T.

The third factor to be refined by EP is f̂2. For this, we follow the approach used by Stern et al. (2009)
and first marginalize f2Q\2 with respect to G(D). The result of this operation is the auxiliary un-normalized
distribution S(W,H) given by

S(W,H) =

∫ U∏
u=1

Mu∏
i=1

δ[gu,zu,i −wuh·,zu,i]Q\2(G(D),W,H) dG(D)

=

[
U∏
u=1

Mu∏
i=1

N (wuh·,zu,i
|m̂g,1

u,i , v̂
g,1
u,i)

][
U∏
u=1

D∏
d=1

N (wu,d|m̂w,3
u,d , v̂

w,3
u,d)

]
[
D∏
d=1

P∏
i=1

N (hd,i|m̂h,4
d,i , v̂

h,4
d,i)

]
. (30)

Let QW,H be the posterior approximation (5) after marginalizing G(D) out. The parameters of QW,H, that
is, mh

d,i, v
h
d,i, m

w
u,d and vwu,d, for d = 1, . . . , D, u = 1, . . . , U and i = 1, . . . , P , are then optimized to minimize

5

KL(QW,H‖S). This can be done very efficiently using the gradient descent method described by Raiko et al.

(2007). The resulting EP updates for f̂2 are given by

[v̂h,2d,i]new =
{

[vhd,i]
−1
new − [v̂h,2d,i]−1old

}−1
, (31)

[m̂h,2
d,i]new = [v̂h,2d,i]new

{
[mh

d,i]new[vhd,i]
−1
new − [m̂h,2

d,i]old[v̂h,2d,i]−1old

}−1
, (32)

[v̂w,2u,d]new =
{

[vwu,d]
−1
new − [v̂w,2u,l]−1old

}−1
, (33)

[m̂w,2
u,d]new = [v̂w,2u,d]new

{
[mw

u,d]new[vwu,d]
−1
new − [m̂w,2

u,d]old[v̂w,2u,d]−1old

}−1
, (34)

[v̂g,2u,j]new =
{

[vgu,j]
−1
new − [v̂g,2u,j]

−1
old

}−1
, (35)

[m̂g,2
u,j]new = [v̂g,2u,j]new

{
[mg

u,j]new[vgu,j]
−1
new − [m̂g,2

u,j]old[v̂g,2u,j]
−1
old

}−1
, (36)

for d = 1, . . . , D, u = 1, . . . , U , j = 1, . . . ,Mu and i = 1, . . . , P where [mh
d,i]new, [vhd,i]new, [mw

u,d]new and
[vwu,d]new, are the parameters of Q that minimize KL(QW,H‖S) and

[mg
u,j]new =

D∑
d=1

[mw
u,d]new[mh

d,zu,j
]new , (37)

[vgu,j]new =

D∑
d=1

[mw
u,d]

2
new[vhd,zu,j

]new +

D∑
d=1

[vwu,d]new[mh
d,zu,j

]2new +

D∑
d=1

[vwu,d]new[vhd,zu,j
]new . (38)

The last factor to be refined on each cycle of EP is f̂1. The EP update operations for this factor are

[m̂g,1
u,i]new = m̂g,2

u,i + v̂g,2u,i [mu,i]
−1
new , (39)

[v̂g,1u,i]new = v̂g,2u,i
[
α−1u,i [mu,i]

−1
new − 1

]
, (40)

for u = 1, . . . , U and i = 1, . . . ,Mu, where

[mu,i]new = m̂g,2
u,i + v̂g,2u,iαu,i , (41)

αu,i = Φ[βu,i]
−1φ[βu,i]tu,i[v̂

g,2
u,i + 1]−

1
2 , (42)

βu,i = tu,im̂
g,2
u,i [v̂

g,2
u,i + 1]−

1
2 (43)

and φ and Φ are the density and the cumulative probability functions of a standard Gaussian distribution,
respectively.

4.3 The EP approximation of the model evidence

Once EP has converged, we can approximate the evidence of the model, that is, P(T(D)|X, `), using

P(T(D)|X, `) ≈
∫ 4∏

a=1

f̂a(G(D),W,H) dG(D) dH dW . (44)

For this, we have to compute the value of the parameters ŝ1, . . . , ŝ4. The value of ŝ1 is

log ŝ1 =

U∑
u=1

Mu∑
i=1

[
log Φ[βu,i] +

1

2
log(2π) +

1

2
log

v̂g,1u,i v̂
g,2
u,i

vgu,i
−

[mg
u,i]

2

2vgu,i
+

[m̂g,1
u,i]

2

2v̂g,1u,i
+

[m̂g,2
u,i]

2

2v̂g,2u,i

]
. (45)

6

The value of ŝ2 is given by

log ŝ2 = logZ2 +

U∑
u=1

Mu∑
i=1

[
1

2
log(2π) +

1

2
log

v̂g,1u,i v̂
g,2
u,i

vgu,i
−

[mg
u,i]

2

2vgu,i
+

[m̂g,1
u,i]

2

2v̂g,1u,i
+

[m̂g,2
u,i]

2

2v̂g,2u,i

]
+

D∑
d=1

P∑
i=1

[
1

2
log(2π) +

1

2
log

v̂h,2d,i v̂
h,4
d,i

vhd,i
−

[mh
d,i]

2

2vhd,i
+

[m̂h,2
d,i]2

2v̂h,2d,i
+

[m̂h,4
d,i]2

2v̂h,4d,i

]
+

U∑
u=1

D∑
d=1

[
1

2
log(2π) +

1

2
log

v̂w,2u,d v̂
w,3
u,d

vwu,d
−

[mw
u,d]

2

2vwu,d
+

[m̂w,2
u,d]2

2v̂w,2u,d

+
[m̂w,3

u,d]2

2v̂w,3u,d

]
, (46)

where Z2 is the variational lower bound obtained in the update of f̂2, that is,

Z2 =

∫
QW,H log

S(W,H)

QW,H(W,H)
dW, dH . (47)

The value of s̃3 is given by

log ŝ3 = logZ3 +

D∑
d=1

U∑
u=1

[
1

2
log(2π) +

1

2
log

v̂w,3u,d v̂
w,2
u,d

vwu,d
−

[mw
u,d]

2

2vwu,d
+

[m̂w,3
u,d]2

2v̂w,3u,d

+
[m̂w,2

u,d]2

2v̂w,2u,d

]
, (48)

where Z3 is computed using

logZ3 = log

∫
P(W|U)

[
U∏
u=1

D∏
d=1

N (wu,d|m̂w,2
u,d , m̂

w,2
u,d)

]
dW

= −DP
2

log(2π) +
1

2

D∑
d=1

log |Σw
d | −

D

2
log |Kusers| −

1

2

U∑
u=1

D∑
d=1

log v̂w,2u,d −

1

2

U∑
u=1

D∑
d=1

[m̂w,2
u,d]2

v̂w,2u,d

+
1

2

D∑
d=1

[mw
d]T[Σwd]−1mw

d , (49)

and [Σw
d]−1 = K−1users + diag[v̂w,2d]−1, mw

d = Σw
d diag[v̂w,2d]−1m̂w,2

d and the vectors m̂w,2
d and v̂w,2d are given

by m̂w,2
d = (m̂w,2

1,d , . . . , m̂
w,2
U,d)T and v̂w,2d = (v̂w,21,d , . . . , v̂

w,2
U,d)T. Finally, the value of s̃4 is given by

log ŝ4 = logZ4 +

D∑
d=1

P∑
i=1

[
1

2
log(2π) +

1

2
log

v̂h,4d,i v̂
h,2
d,i

vhd,i
−

[mh
d,i]

2

2vhd,i
+

[m̂h,4
d,i]2

2v̂h,4d,i
+

[m̂h,2
d,i]2

2v̂h,2d,i

]
, (50)

where Z4 is computed using

logZ4 = log

∫
P(H|X, `)

[
D∏
d=1

P∏
i=1

N (hd,i|m̂h,2
d,i , m̂

h,2
d,i)

]
dH

= −DP
2

log(2π) +
1

2

D∑
d=1

log |Σh
d | −

D

2
log |Kitems| −

1

2

D∑
d=1

P∑
i=1

log v̂h,2d,i −

1

2

D∑
d=1

p∑
i=1

[m̂h,2
d,i]2

v̂h,2d,i
+

1

2

D∑
d=1

[mh
d]T[Σh

d]−1mh
d , (51)

and [Σh
d]−1 = K−1items + diag[v̂h,2d]−1, mh

d = Σddiag[v̂h,2d]−1m̂h,2
d and the vectors m̂h,2

d and v̂h,2d are given

by m̂h,2
d = (m̂h,2

1,d , . . . , m̂
h,2
P,d)

T and v̂h,2d = (v̂h,21,d , . . . , v̂
h,2
P,d)

T. Given ŝ1, . . . , ŝ4, we approximate P(T(D)|X, `)

7

using

logP(T(D)|X, `) ≈
4∑
i=a

log ŝa −
U∑
u=1

Mu∑
i=1

[
1

2
log(2π) +

1

2
log

v̂g,1u,i v̂
g,2
u,i

vgu,i
−

[mg
u,i]

2

2vgu,i
+

[m̂g,1
u,i]

2

2v̂g,1u,i
+

[m̂g,2
u,i]

2

2v̂g,2u,i

]
−

D∑
d=1

P∑
i=1

[
1

2
log(2π) +

1

2
log

v̂h,4d,i v̂
h,2
d,i

vhd,i
−

[mh
d,i]

2

2vhd,i
+

[m̂h,4
d,i]2

2v̂h,4d,i
+

[m̂h,2
d,i]2

2v̂h,2d,i

]
−

U∑
u=1

D∑
d=1

[
1

2
log(2π) +

1

2
log

v̂w,2u,d v̂
w,3
u,d

vwu,d
−

[mw
u,d]

2

2vwu,d
+

[m̂w,2
u,d]2

2v̂w,2u,d

+
[m̂w,3

u,d]2

2v̂2,3u,d

]
. (52)

Finally, some of the EP updates may generate a negative value for v̂g,au,i , v̂
w,a
u,d or v̂h,ad,j , where u = 1, . . . , U ,

i = 1, . . . ,Mu, j = 1, . . . , P and i = 1, . . . , 4. Negative variances in Gaussian approximate factors are
common in many EP implementations (Minka, 2001; Minka and Lafferty, 2002). When this happens, the
marginals of the approximate factor with negative variances are not density functions. Instead, they are
correction factors that compensate the errors in the corresponding marginals of other approximate factors.
However, these negative variances can lead to failure of the proposed EP algorithm. This may happen when
we have to compute log |Σh

d | in (51) and some of the v̂h,2d,i are negative. In this case, Σhd may not be positive

definite and |Σh
d | may be negative. The result is that EP may no longer be able to approximate the model

evidence since log |Σh
d | may not be defined in (51). The same may occur for log |Σw

d | in (49). To address

this problem, whenever an EP update yields a negative number for any of the v̂g,au,i , v̂
w,a
u,d or v̂h,ad,j , we do not

update this parameter, nor the corresponding m̂g,a
u,i , m̂

w,a
u,d or m̂h,a

d,j .

4.4 Sparse approximations to speed up computations

The computational cost of EP is determined by the operations needed to refine the approximate factors
f̂3 and f̂4. In particular, computing the vectors [vhd]new and [mh

d]new in (24) and (25), for d = 1, . . . , D,
has cost O(DP 3). Similarly, the computation of the vectors [vwd]new and [mw

d]new in (28) and (29), for
d = 1, . . . , D, has cost O(DU3). These costs can be prohibitive when P or U are very large. Nevertheless,
they can be reduced by using sparse approximations to the covariance matrices Kusers and Kitems. We
use the fully independent training conditional or FITC approximation, also known as the sparse pseudo-
input GP (SPGP) Snelson and Ghahramani (2005). With FITC, the U × U covariance matrix Kusers is
approximated by K′users = Qusers + diag(Kusers −Qusers), where Qusers = Kusers,U,U0

K−1users,U0,U0
KT

users,U,U0
.

In this expression, Kusers,U0,U0
is an U0 × U0 covariance matrix given by the evaluation of the covariance

function for the users at all possible pairs of U0 < U locations or user pseudo-inputs {u′1, . . . ,u′U0
}, where

u′i ∈ U for i = 1, . . . , U0, and Kusers,U,U0
is an U × U0 matrix with the evaluation of the covariance function

for the users at all possible pairs of original user feature vectors and user pseudo-inputs, that is, (ui,u
′
j),

for i = 1, . . . , U and j = 1, . . . , U0. Similarly, the P × P covariance matrix Kitems is also approximated by
K′items = Qitems + diag(Kitems −Qitems), where Qitems = Kitems,P,P0

K−1items,P0,P0
KT

items,P,P0
, Kitems,P0,P0

is
a P0 × P0 covariance matrix given by the evaluation of the preference kernel at all possible pairs of P0 < P
locations or item-pair pseudo-inputs {(x′1,x′′1), . . . , (x′P0

,x′′P0
)}, where x′i,x

′′
i ∈ X for i = 1, . . . , P0, and

Kitems,P,P0 is a P × P0 matrix with the evaluation of the preference kernel at all possible combinations of
feature vectors for the original item pairs and item-pair pseudo-inputs, that is, ((xα(i),xβ(i)), (x

′
j ,x
′′
j)), for

i = 1, . . . , P and j = 1, . . . , P0.
We now describe how to refine the third and fourth approximate factors when Kusers and Kitems are

replaced by K′users and K′items, respectively. The required operations are can be efficiently implemented
using the formulas described in (Naish-Guzman and Holden, 2007) and (Gredilla, 2010). In particular, let
K′users = D + PRTRPT, where D = diag(Kusers −Qusers), P = Kusers,U,U0 and R is the upper Cholesky
factor of K−1users,U0,U0

, that is, K−1users,U0,U0
= RTR. This Cholesky factor can be computed using

R = rot180(chol(rot180(Kusers,U0,U0))T \ I) , (53)

8

where I is the identity matrix, rot180(·) rotates an m × m square matrix 180◦ so that the element in
position (i, j) is moved to position (m − i + 1,m − j + 1), A \ a denotes the solution to the linear system
Ax = a and chol(·) returns the upper Cholesky factor of its argument. The matrix Σw

d , required to
compute the vectors [vwd]new and [mw

d]new in (28) and (29), can the be encoded efficiently using Σw
d =

Dnew
d + Pnew

d [Rnew
d]TRnew

d [Pnew
d]T, where

Dnew
d =

(
I + Ddiag[v̂w,2d]−1

)−1
D , (54)

Pnew
d =

(
I + Ddiag[v̂w,2d]−1

)−1
P , (55)

Rnew
d = rot180(chol(rot180(I + RPTdiag[v̂w,2d]−1(I + Ddiag[v̂w,2d]−1)−1PRT)T) \R (56)

and v̂w,2d is given by v̂w,2d = (v̂w,21,d , . . . , v̂
w,2
U,d)T. The matrix Σh

d , required to compute the vectors [vhd]new
and [mh

d]new in (24) and (25), can the be efficiently encoded in a similar manner. For this, we only have

to replace v̂w,2d by v̂h,2d = (v̂h,2d,1 , . . . , v̂
h,2
d,P)T and Kusers,U0,U0

and Kusers,U,U0
by Kitems,P0,P0

and Kitems,P,P0
,

respectively. These alternative representations of Σw
d and Σh

d allow us to update f̂3 and f̂4 in O(dU2
0U) and

O(dP 2
0P) operations, respectively.

We also describe the new update for logZ3. Instead of using (49), we now use the following expression

logZ3 =

D∑
d=1

[
−U

2
log(2π) + log |Rnew

d | − log |R| − 1

2

U∑
u=1

log
(
v̂w,2u,d + du

)
+

1

2

U∑
u=1

m̂w,2
u,d ([mw

d]new)u −
1

2

U∑
u=1

[m̂w,2
u,d]2

v̂w,2u,d

]
, (57)

where du is the u-th entry in the diagonal of D and ([mw
d]new)u is the u-th entry in the vector [mw

d]new. The
analogous update for logZ4 is given by

logZ4 =

D∑
d=1

[
−P

2
log(2π) + log |Rnew

d | − log |R| − 1

2

P∑
i=1

log
(
v̂h,2d,i + di

)
+

1

2

P∑
i=1

m̂h,2
d,i ([mh

d]new)i −
1

2

P∑
i=1

[m̂h,2
d,i]2

v̂h,2d,i

]
, (58)

where di is the i-th entry in the diagonal of D and ([mh
d]new)i is the i-th entry in the vector [mh

d]new. Note
that di, R and Rnew

d in (58) refer to the matrices needed for working with the efficient encoding of K′items.
By contrast, du, R and Rnew

d in (57) refer to the same matrices, but for working with the efficient encoding
of K′users.

Finally, to compute the predictive distribution, instead of (14) and (15), we use

mh
d,P+1 = kT

? γ
new
d , (59)

vhd,P+1 = d?+ ‖ Rnew
d k? ‖2 , (60)

where k? is a P0-dimensional vector that contains the prior covariances between hd(xα(P+1),xβ(P+1))
and the value of latent function hd at the item-pair pseudo-inputs, that is, hd(x

′
1,x
′′
1), . . . , hd(x

′
P0
,x′′P0

),

γnew
d = [Rnew

d]TRnew
d [Pnew

d]Tdiag[v̂h,2d]−1m̂h,2
d , d? = k? − pT

?RTRp? and finally, k? is the prior variance of
hd(xα(P+1),xβ(P+1)). Note that in all of these formulas, Rnew

d , Rnew
d and RT refer to the matrices needed

for working with the efficient encoding of K′items.

5 Performance of BALD on GP binary classification problems

BALD is evaluated in a series of GP binary classification tasks with real-world data. In these experi-
ments BALD is compared with several related algorithms for active learning with GPs: random sampling,

9

Maximum Entropy Sampling Sebastiani and Wynn (2000), Query by Committee Freund et al. (1997), the
Informative Vector Machine Lawrence et al. (2002) and an SVM-based approach Tong and Koller (2001).
These algorithms and their relation to BALD are described in the following paragraphs.

Recall that the central objective of information theoretic active learning for classification is

H[P(g|D)]− EP(y|x,D) [H[P(g|y,x,D)]] , (61)

where g is the classifier latent function, x is a new feature vector, y is the corresponding label and D contains
the data observed so far. BALD uses the following equivalent reformulation

H[P(y|x,D)]− EP(g|D) [H [P(y|x, g)]] . (62)

Maximum Entropy Sampling (MES) (Sebastiani and Wynn, 2000) is similar to BALD in the sense that it
also works explicitly in data space (that is, using equation (62)). MES was proposed for regression models
with input-independent observation noise. In this scenario, the noise in the target variable y does not depend
on the input x and the second term in equation (62) is constant and can be safely ignored. However, if noise
in the target variable is not input-independent, MES will tend to sample regions of the input space where
uncertainty in g is low but uncertainty in the labels (because of observation noise) is high, as illustrated in
Figure 1 of the main manuscript.

The Query by Committee (QBC) approach makes a different approximation to (62) (Freund et al., 1997).
QBC samples parameters from the posterior (called committee members). These parameters are then used
to perform a deterministic vote on the outcome of each candidate x. The x with the most balanced vote is
selected for the next active inclusion in the training set. This objective is termed the ‘principle of maximal
disagreement’. QBC is similar to BALD when the objective used by BALD is approximated by sampling
from the posterior, with the exception that BALD uses a probabilistic measure of disagreement (equation
(62)). Note that the deterministic vote criterion used by QBC does not take into account the confidence of
the learning method on its predictions. Because of this, QBC can exhibit the same pathologies as MES.

The Informative Vector Machine (IVM) (Lawrence et al., 2002) is also motivated by information theory.
This method was originally designed for sub-sampling a dataset and not for addressing online active learning
problems. The IVM requires that the target variables y are observed prior to making a query and it is
therefore not applicable online active learning tasks. Nonetheless, BALD can be applied to the dataset
sub-sampling problem for which the IVM is designed, it is simply equipped with less information. The IVM
works with equation (61) instead of (62). Entropies for the latent function g are calculated approximately
in the marginal subspace corresponding to the observed data points. For this, the IVM employs a Gaussian
approximation to the posterior distribution at these locations. The posterior approximation must be updated
to evaluate the entropy decrease after the inclusion of each candidate data point. If there are n candidate
inputs under consideration, a total of O(n) posterior updates are required. By contrast, BALD only requires
O(1) updates. In practice, the IVM approach is infeasible in sophisticated models such as the proposed
multi-task approach.

Finally, Tong and Koller (2001) propose an algorithm for active learning with support vector machines.
This method approximates the version space (the set of hyperplanes consistent with the data) with a simpler
object, such as a hypersphere. The algorithm selects the data point whose dual plane is closest to bisecting
this hypersphere.

We now describe the experimental procedure used to compare BALD to these approaches. The datasets
were divided randomly into pool and test sets. Each algorithm was initialized with two data points, one from
each class, drawn randomly from the pool. The algorithms select points sequentially, and their classification
error was assessed on the test set after each query. The procedure was repeated for several random splits
of the data to assess statistical significance. Figure 1 provides a summary of the results. BALD can be
seen to outperform consistently the alternative algorithms across many datasets. The closest competitor
is Maximum Entropy Sampling, which we use as a benchmark active learning algorithm for use with the
multi-task preference model in the main paper.

10

Dataset BALD Random Entropy QBC2 QBC100 IVM SVM
austra 18.54 ± 2.94 44.15 ± 12.63 22.46 ± 6.20 68.38 ± 1.38 29.31 ± 5.06 28.46 ± 6.58 55.00 ± 1.00
cancer 16.80± 0.59 22.20 ± 1.25 21.10 ± 0.48 39.65 ± 0.41 18.95 ± 1.34 21.35 ± 0.50 24.40 ± 8.30
crabs 9.80 ± 0.58 11.40 ± 1.29 9.20 ± 0.49 17.00 ± 1.26 10.20 ± 0.97 13.60 ± 1.86 23.20 ± 7.29
letter D v. P 45.30 ± 1.14 92.10 ± 2.41 51.50 ± 0.83 48.80 ± 1.34 49.10 ± 1.38 51.00 ± 0.84 N/A
letter E v. F 30.17 ± 1.11 71.50 ± 17.72 34.33 ± 0.42 44.67 ± 2.12 30.67 ± 1.65 33.00 ± 2.27 N/A
vehicle 33.20 ± 2.11 75.30 ± 7.38 36.60 ± 1.74 85.20 ± 7.16 35.00 ± 1.80 38.20 ± 2.00 41.60 ± 1.64
wine 8.80 ± 0.37 26.60 ± 8.57 10.80 ± 1.66 36.40 ± 8.36 12.60 ± 1.78 20.40 ± 9.92 23.80 ± 3.48
wdbc 18.15 ± 0.37 47.00 ± 1.46 22.55 ± 1.05 43.85 ± 1.39 23.40 ± 1.05 21.40 ± 0.85 45.70 ± 1.75

Table 1: Performance of BALD and other active learning algorithms on several binary classification datasets
from the UCI repository. Entries indicate the number of datapoints (plus or minus one standard error of the
mean) required to achieve 95% of the predictive performance achieved by including the entire pool set. Bold
typeface indicates the best performing algorithm for each dataset. N/A indicates that the corresponding
algorithms did not meet the 95% performance level by the end of the simulation.

6 Detailed description of the analyzed datasets

The following paragraphs describe the datasets used for the experiments in Section 2.1 of the main document.
Synthetic. We generated 10 items with feature vectors xi = (xi1, xi2), where xi1 and xi2 are uniformly

distributed with zero mean and unit variance, for i = 1, . . . , 10. The user preferences are obtained using
D = 5 latent functions h1, . . . , h5 sampled from a Gaussian process with zero mean and preference kernel
given by a squared exponential kernel with unit length-scale. The preferences for the u-th user are generated
according to the sign of gu(xi,xj) =

∑5
d=1 w

′
d(uu)hd(xi,xj) + εij , where εij ∼ N (0, 1), the user features uu

are generated in the same manner as the feature vectors for the items and the functions w′1, . . . , wD follow
the same prior distribution as h1, . . . , h

′
5.

Jura. This dataset contains concentration measurements for 7 heavy metals in soils of the Swiss Jura
region at 359 locations (Atteia et al., 1994; Webstet et al., 1994). We standardized the measurements of
each heavy metal to have zero mean and unit standard deviation across the whole dataset. The standardized
measurements are used as utility values to generate preferences for any pair of heavy metals at each location.
Therefore, in this dataset, the locations correspond to users and each heavy metal represents a different
item. To generate the item features, we randomly singled out 20 locations. The item features are given by
the standardized measurements obtained at these locations. The user features correspond to the x and y
coordinates for the measurements as well as the rock and land type.

MovieLens. This dataset contains 1 million ratings from 6,000 users on 4,000 movies. A total of 10
movies were randomly selected from the 50 movies with most ratings. We also selected those users with at
least 7 ratings on these 10 movies. The remaining missing ratings were estimated using a nearest neighbor
method. The ratings for each user were used as utility values in order to generate preferences for each pair
of movies. The features for each user are gender, age and occupation. The features for each movie are genres
such as action, comedy or adventure.

Sushi. This dataset contains complete rankings given by 5,000 users on 10 different types of sushi
(Kamishima et al., 2005), where each sushi includes as features style, major group, minor group, heaviness,
consumption frequency, normalized price and sale frequency. The different users are also represented by a
set of features which include gender, age and geographical/regional information.

Election. This dataset contains the votes obtained by 8 political parties (items) at 650 constituencies
(users) in the 2010 general elections in the UK. We only kept data for those constituencies with at least
votes for more than 6 parties. Missing votes were estimated using a nearest neighbor method. To generate
feature vectors for each item, we randomly singled out 20 constituencies and used the corresponding votes
as features. The features for each ‘user’ are the corresponding coordinates (latitude and longitude) of the
centroid of the constituency on the map.

11

7 Model of Birlutiu et al.

As in the single-task preference learning model, a different GP classifier is fitted to the data generated by each
user. However, the different classifiers are now connected by a common GP prior for the latent preference
functions which is optimized to fit the data Birlutiu et al. (2009). Let gu be the u-th user’s latent preference
function and let gu be the k-dimensional vector with the evaluation of this function at all the observed pairs
of items, that is, k = P . Let µ̄ and Σ̄ denote the prior mean and prior covariance matrix of gu. Then µ̄
and Σ̄ are iteratively refined by an EM algorithm which iterates the following steps:

E-step Estimate the sufficient statistics (mean µu and covariance matrix Σu) of the posterior distribution
of gu for user u = 1, . . . , U , given the current estimates at step t of the parameters µ̄(t) and Σ̄(t) of the
common GP prior.

M-step Re-estimate the parameters of the GP prior using

µ̄(t+1) =
1

U

U∑
u=1

µu ,

Σ̄(t+1) =
1

U

U∑
u=1

(µ̄(t) − µu)T(µ̄(t) − µu) +
1

U

U∑
u=1

Σu .

On the first iteration of the EM algorithm we fix µ̄(0) = 0 and compute Σ̄(0) by evaluating a preference
covariance function at all the possible pairs of items. This preference covariance function is generated by
a squared exponential kernel with unit lengthscale. The computational cost of the EM algorithm is rather
high since each iteration requires the inversion of U covariance matrices of dimension P ×P , where P is the
total number of observed item pairs. To reduce the computational burden, we limit the number of iterations
of the EM algorithm to 20. In our experiments, increasing the number of EM iterations above 20 did not
lead to improvements in the predictive performance of this method.

8 Model of Bonilla et al.

An alternative multi-task model for learning pairwise user preferences is described by Bonilla et al. (2010).
This approach is based on the assumption that users with similar characteristics or feature vectors should
have similar preferences. In particular, there is a single large latent function g which depends on both the
features of the two items to be compared, xi and xj , and the specific feature vector for the user who makes
the comparison, uu. Within the framework of the preference kernel, the likelihood function for Bonilla’s
model is

P(y|uu,xi,xj , g) = Φ(yg(xi,xj ,uu) (63)

and the prior for the utility function g is a Gaussian process with zero mean and covariance function

kBonilla((uu,xi,xj), (us,xk,xl),) = kusers(uu,us)kpref((xi,xj), (xk,xl)) , (64)

where kpref is a preference kernel and kusers is a covariance function for user features. This latter function will
be large when uu and us are similar to each other and small otherwise. Therefore, the effect of kusers in (64)
is to favor that users with similar feature vectors agree on their preferences. The preference kernel allows us
to do efficient approximate inference in Bonilla’s model using any standard implementation of expectation
propagation for the binary classification problem with GPs. However, the computational cost of Bonilla’s
method is rather high. When the preference kernel is used, the cost of this technique is O((

∑U
u=1Mu)3),

where U is the total number of users and Mu is the number of pairs evaluated by the u-th user. By
contrast, when the standard framework for preference learning with GPs is used, the cost of this method is
O((

∑U
u=1M

′
u)3), where M ′u denotes the number of different items evaluated by the u-th user. In practice,

12

Log Evidence Returned by EP

−2 −1 0 1 2

−
2

−
1

0
1

2

Figure 2: Logarithm of the evidence returned by EP when run on the first training set of the experiments
with synthetic data. Different values are considered for the lengthscale parameters σusers and σitems. The
synthetic data are generated using log σusers = 0 and log σitems = 0. The highest evidence returned by EP
corresponds to values of log σusers and log σitems close to zero.

Table 2: Average test error with 100 users.
Dataset CPU CP BI BO SU
Synthetic 0.163±0.007 0.182±0.007 0.255±0.016 0.169±0.008 0.228±0.008
Sushi 0.125±0.009 0.115±0.010 0.196±0.011 0.253±0.008 0.153±0.010
MovieLens 0.187±0.008 0.166±0.006 0.205±0.009 0.314±0.007 0.223±0.008
Election 0.232±0.015 0.154±0.015 0.153±0.011 0.385±0.017 0.309±0.014
Jura 0.162±0.015 0.154±0.011 0.188±0.022 0.181±0.014 0.185±0.013

Bonilla’s method is infeasible when we have observations for more than a few hundred users. Additionally, this
method requires that feature vectors are available for the different users and that users with similar feature
vectors generate similar preference observations. When these conditions do not hold, Bonilla’s method may
lead to poor predictive performance.

9 Tuning the kernel lengthscale

In this section we perform an additional experiment to show that approximation of the model evidence given
by EP can be used to tune the kernel hyper-parameters in the proposed multi-task model. For this, we use
the synthetic dataset described in the main document. Figure 2 shows a contour plot of the log-evidence
returned by EP when run on the first training set of the experiments with synthetic data and 100 users.
Different values are considered for the lengthscale parameters σusers and σitems. The synthetic data are
generated using log σusers = 0 and log σitems = 0. The highest evidence returned by EP corresponds to values
of log σusers and log σitems close to zero. In this experiment we are running EP using a total of 20 latent
functions, while the data are generated using only 5 latent functions. As mentioned in the main document,
the proposed multi-task model seems to be robust to over-fitting and over-estimation of the number of latent
functions does not seem to harm predictive performance.

13

Table 3: Test error for each method and active learning strategy with at most 1000 users.
Dataset CPU-B CPU-E CPU-R CP-B CP-E CP-R SU-B SU-E SU-R
Synthetic 0.136±0.004 0.136±0.004 0.14±0.005 0.154±0.004 0.161±0.004 0.179±0.004 0.253±0.005 0.263±0.007 0.276±0.006
Sushi 0.150±0.004 0.155±0.005 0.185±0.004 0.143±0.05 0.151±0.05 0.179±0.06 0.183±0.06 0.199±0.05 0.215±0.05
MovieLens 0.172±0.005 0.177±0.006 0.200±0.006 0.165±0.005 0.171±0.006 0.196±0.005 0.233±0.006 0.24±0.004 0.253±0.007
Election 0.221±0.015 0.188±0.016 0.265±0.014 0.107±0.016 0.103±0.0010 0.184±0.015 0.331±0.014 0.349±0.017 0.344±0.013
Jura 0.143±0.009 0.144±0.011 0.17±0.011 0.138±0.009 0.138±0.0010 0.17±0.011 0.183±0.013 0.169±0.012 0.201±0.012

Synthetic Sushi MovieLens

0 2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

num samples

er
ro

r

0 2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

num samples

er
ro

r

0 2 4 6 8 10

0.2

0.25

0.3

0.35

num samples

er
ro

r

Election Jura

0 2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

num samples

er
ro

r

0 2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

num samples

er
ro

r

CPU−B
CPU−E
CPU−R
CP−B
CP−E
CP−R
SU−B
SU−E
SU−R

Figure 3: Average test error for CPU, CP and SU, using the strategies BALD (-B), entropy (-E) and random
(-R) for active learning.

10 Complete figures for active learning on large datasets

Figure 9 shows the learning curves for all methods on all the datasets. Tables 2 and 3 are reproductions of
the tables in the results section of the main paper with information regarding the standard deviations of the
results.

References

Atteia, O., Dubois, J.-P., and Webster, R. (1994). Geostatistical analysis of soil contamination in the swiss
jura. Environmental Pollution, 86(3):315 – 327.

Birlutiu, A., Groot, P., and Heskes, T. (2009). Multi-task preference learning with gaussian processes. In
Proceedings of the 17th European Symposium on Artificial Neural Networks (ESANN), pages 123–128.

Bishop, C. M. (2007). Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer.

Bonilla, E. V., Guo, S., and Sanner, S. (2010). Gaussian process preference elicitation. In Advances in neural
information processing systems, pages 262–270.

14

Freund, Y., Seung, H., Shamir, E., and Tishby, N. (1997). Selective sampling using the query by committee
algorithm. Machine learning, 28(2):133–168.

Gredilla, M. L. (2010). Sparse Gaussian Processes for Large-scale Machine Learning. PhD thesis, Universidad
Carlos III de Madrid.

Hernández-Lobato, J. M. (2010). Balancing Flexibility and Robustness in Machine Learning: Semi-
parametric Methods and Sparse Linear Models. PhD thesis, Universidad Autónoma de Madrid.

Kamishima, T., Kazawa, H., and Akaho, S. (2005). Supervised ordering - an empirical survey. In Proceedings
of the 5th IEEE International Conference on Data Mining (ICDM 2005), pages 673–676.

Lawrence, N., Seeger, M., and Herbrich, R. (2002). Fast sparse gaussian process methods: The informative
vector machine. Advances in neural information processing systems, 15:609–616.

Minka, T. (2001). A family of algorithms for approximate Bayesian inference. PhD thesis, Massachusetts
Institute of Technology.

Minka, T. and Lafferty, J. (2002). Expectation-propagation for the generative aspect model. In Proceedings
of the 18th Conference on Uncertainty in Artificial Intelligence, pages 352–359.

Naish-Guzman, A. and Holden, S. B. (2007). The generalized fitc approximation. In Advances in Neural
Information Processing Systems 20.

Raiko, T., Ilin, A., and Juha, K. (2007). Principal component analysis for large scale problems with lots
of missing values. In Kok, J., Koronacki, J., Mantaras, R., Matwin, S., Mladenic, D., and Skowron,
A., editors, Machine Learning: ECML 2007, volume 4701 of Lecture Notes in Computer Science, pages
691–698. Springer Berlin / Heidelberg.

Sebastiani, P. and Wynn, H. (2000). Maximum entropy sampling and optimal Bayesian experimental design.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(1):145–157.

Snelson, E. and Ghahramani, Z. (2005). Sparse gaussian processes using pseudo-inputs. In Advances in
Neural Information Processing Systems 18.

Stern, D. H., Herbrich, R., and Graepel, T. (2009). Matchbox: large scale online bayesian recommendations.
In Proceedings of the 18th international conference on World wide web, WWW ’09, pages 111–120, New
York, NY, USA. ACM.

Tong, S. and Koller, D. (2001). Support vector machine active learning with applications to text classification.
Journal of Machine Learning Research, 2:45–66.

van Gerven, M., Cseke, B., de Lange, F., and Heskes, T. (2010). Efficient Bayesian multivariate fMRI
analysis using a sparsifying spatio-temporal prior. Neuroimage, 50:150–161.

Webstet, R., Atteia, O., and Dubois, J.-P. (1994). Coregionalization of trace metals in the soil in the swiss
jura. European Journal of Soil Science, 45(2):205–218.

15

	The preference kernel
	Properties of the preference kernel
	Taylor expansion on logh[(x)]
	Expectation propagation and variational Bayes
	The EP predictive distribution
	The EP update operations
	The EP approximation of the model evidence
	Sparse approximations to speed up computations

	Performance of BALD on GP binary classification problems
	Detailed description of the analyzed datasets
	Model of Birlutiu et al.
	Model of Bonilla et al.
	Tuning the kernel lengthscale
	Complete figures for active learning on large datasets

