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Consider the optimization problem of
max

g
〈g,dz〉 such that Ag ≤ 1NV×(NV−1) (1)

as defined in eqn. (2) of the Main text.

A Similarity Transformation

Let the distance between the nodes of the graph be encoded in the matrix WG , and let ∆G be the
corresponding adjacency matrix, such that ∆G[i, j] = WG[i, j]−1, ∀i 6= j . Therefore, its graph Lapla-
cian is LG = D∆G − ∆G, where D∆G is the diagonal degree matrix with D∆G [i, i] =

∑
j∈V ∆G[i, j]

and D∆G [i, j] = 0, for i 6= j.

The similarity transformation M = A−diag{wG}−1A, where A− is the pseudo-inverse of A. Now,
because A>A is a Toeplitz NV × NV matrix with of rank NV − 1, with all diagonal entries equal to
2(NV − 1) and all non-diagonal elements equal to −2, the SVD of a A =

√
2NVUINV−1V> where

INV−1 is the NV ×NV identity matrix with 0 on its last entry.

Therefore,

A− =
1√
2NV

VINV−1U> =
1

NV
A> giving M =

1

NV
A>diag{wG}−1A =

1

NV
LG. (2)

B Error Analysis

Let the term ai,j denote the row of the constraint matrix A corresponding to the constraint
g[i]− g[j] ≤ 1 .

Proposition 1. If g∗ is an optimal solution to eqn. (1), then for every pair of constraints such that
〈ai,j ,g∗〉 = 1 and 〈al,m,g∗〉 = 1

it is the case that:
〈ai,j ,aj,k〉 ≥ 0

∗Corresponding Author.firdaus.janoos@exxonmobil.com

1

firdaus.janoos@exxonmobil.com


Restated, this theorem implies that an extreme point is formed by the intersection of hyper-planes
whose normal vectors (i.e. constraints) either make an inner product of 0 or 1 with each other.

Proof. Here, ai,j and al,m represent two distinct constraint vectors of magnitude
√
2 corresponding

to the edges (i, j) and (l,m) of G, where each has one +1 and one −1 entry. The inner product
between them can therefore have 3 values: (a) 0 (i.e. orthogonal), (b) +1 (i.e. π/3 radians), (c) −1
(i.e. 2π/3 radians), or (d) −2 (i.e. π radians).

In case (d), the two hyper-planes do not intersect, while the NV − 2 dimensional space arising from
case (c), violates the constraints of the dual problem, because 〈ai,j ,al,m〉 = −1 is equivalent to an
inner product of the form 〈ai,j ,al,i〉 = −1. This leads to:

+ g[i]− g[j] = 1

+ g[l]− g[i] = 1

⇒+ g[l]− g[j] = 2 which violates constraint g[l]− g[j] ≤ 1

Proposition 2. If g∗ is an optimal solution to eqn. (1), then

g∗ =
1

NV

(
+(d+

1 , d
+
2 , . . . d

+
NV

)> − (d−1 , d
−
2 , . . . d

−
NV

)>
)
. (3)

Here, (d+
1 . . . d

+
NV

) are the number of +1 entries and (d−1 . . . d
−
NV

) are the number of −1 entries in
the 1 . . . NV columns of the matrix E of active constraints for g∗ (i.e. Eg∗ = 1 ), such that:

d+
i = NV

+ AND d−i = 0
OR d+

i = 0 AND d−i = NV
−

}
for all i = 1 . . . NV,

with NV
+ ≥ 1, NV

− ≥ 1 and NV
+ +NV

− = NV .

Corollary. A straightforward result of Proposition 2 is that:

g∗ =
1

NV

∑
i,j|ai,j∈E

ai,j . (4)

Here E = {ai,j | 〈ai,j ,g∗〉 = 1} is the set of constraints that active at g∗.

Proof. By Proposition 1, an optimal extreme point g∗ is constructed by selecting a subset V+ ⊂ V
of as sources nodes corresponding to +g[i] term for the active constraints at g∗ while the remaining
V− , V\V+ of nodes as destinations corresponding to−g[j] in the active constraint set1. Therefore,
constraint ai,j is active ⇐⇒ i ∈ V+ and j ∈ V− .

As a result, in the set E of active constraints at g∗ , every source node i will pair with NV
− , |V−|

destination nodes, and therefore participate in NV
− constraints. Similarly, every destination node j

(corresponding to a −1 entry in the j–th column of the active constraint matrix E) will participate
in NV

+ , |V+| constraints. Therefore, the active constraint set E for g∗ will have NV
+ vectors ai,·

with +1 for the i–th node and NV
− vectors a·,j with −1 for the j–th node.

Define E as the matrix of constraints 〈ai,j ,g〉 = 1 active at g∗ . This matrix E will haveNV
+ entries

of +1 in the i–th column of source node i and NV
− entries of -1 in the j–th column of source node

j. That is, it will have either NV
+ ×+1 or NV

− ×−1 entries in any column 2.

Now defining the NV–vector

η ,
∑

i,j|ai,j∈E

ai,j

= + (d+
1 , d

+
2 , . . . d

+
NV

)> − (d−1 , d
−
2 , . . . d

−
NV

)>,

we see that

Eη = NV1NV

1 Note that there should be at least one sink and one source node involved in the construction of any g∗ .
2 The equality constraint 〈1NV ,g〉 = 0 can be added as the last row of E to give it a rank of NV, without

changing the argument.
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Therefore, this yields the desired result that the extreme-point

g∗ =
η

NV

is the unique solution to Eg∗ = 1NV .

Remark: We observe that this construction which requires selecting a node as source or destination,
along with the fact that there must be at least one source and one destination node, implies that there
are 2NV − 2 extreme points for the polytope Ag ≤ 1 .

Proposition 3. Let g∗ be any extreme-point of the polytope Ag ≤ 1 . Then the optimal solution g∗

to eqn. (1) satisfies the property: 〈
g∗,

dz

||dz||

〉
≥ 1√

2

Proof. At the optimum point, by the strict duality of LP, there exists a primal solution f∗ : E→ R+,
such that

〈
f∗,1NV×(NV−1)

〉
= 〈g∗,dz〉 and f∗>A = dz>, and

f∗[i, j] > 0 ⇐⇒ g∗[i]− g∗[j] = 1
f∗[i, j] = 0 ⇐⇒ g∗[i]− g∗[j] < 1

}
by complementary slackness.

Therefore, dz is in the positive cone of the active constraint set E = {ai,j | 〈ai,j ,g∗〉 = 1} as per:

dz =
∑

i,j|ai,j∈E

f∗[i, j]ai,j , with f∗[i, j] ≥ 0. (5)

Furthermore, by eqn. (4), g∗ also belongs to this cone:

g∗ =
1

NV

∑
i,j|ai,j∈E

ai,j . (6)

Therefore, by the strict duality property:

1

||dz|| 〈g
∗,dz〉 =

∑
i,j|ai,j∈E f

∗[i, j][∑
i,j|ai,j∈E

∑
l,m|al,m∈E

f∗[i, j]f∗[l,m]〈ai,j ,al,m〉
] 1

2

≥
∑
i,j|ai,j∈E f

∗[i, j]
√

2
[∑

i,j|ai,j∈E f
∗[i, j]

]
≥ 1√

2
(7)

The second last inequality follows from 0 ≤ 〈ai,j ,al,m〉 ≤ 2 by Proposition 1, giving:∑
i,j|ai,j∈E

∑
l,m|al,m∈E

f∗[i, j]f∗[l,m]〈ai,j ,al,m〉 ≤ 2
∑

i,j|ai,j∈E

∑
l,m|al,m∈E

f∗[i, j]f∗[l,m]

≤ 2

 ∑
i,j|ai,j∈E

f∗[i, j]

2

.

Theorem 1. Defining dz , zt1 − zt2 , the worst-case error ε for the spherical relaxation

T̂D(zt1 , zt2) =
1√
2
||dz|| = 1√

2
||zt1 − zt2 || with ĝ∗ =

1√
2

dz

||dz|| (8)

of the transportation distance TD(zt1 , zt2) is

ε ≤ 1√
2
||dz||. (9)
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The worst-case error |TD(zt1 , zt2)− T̂D(zt1 , zt2)| for an arbitrary graph is:

ε ≤ λ−1
min√

2
||dz||, (10)

where λmin is smallest non-zero eigenvalue of the unnormalized Laplacian LG of the graph G.

Proof. Assuming constant ||dz|| = α , the worst-case error is:

ε = max
dz,||dz||=α

∣∣∣∣〈g∗,dz〉 − ||dz||√
2

∣∣∣∣ ,
= max

dz
α

∣∣∣∣〈g∗, dzα
〉
− 1√

2

∣∣∣∣ , (11)

where g∗ is the optimal solution to eqn. (1).

Now, Proposition 3 implies that for any cost vector dz , there exists an extreme point of the polytope
Ag∗ ≤ 1 , such that

1

||dz|| 〈g
∗,dz〉 ≥ 1√

2
.

Therefore, eqn. (11) becomes

ε = α

[
max
dz

〈
g∗,

dz

α

〉
− 1√

2

]
,

where now g∗ is now any extreme point of the polytope Ag∗ ≤ 1 .

This achieves a maxima for dz/α = g∗/||g∗|| , and therefore, we get:

ε =α

[〈
g∗,

g∗

||g∗||

〉
− 1√

2

]
,

=||dz||
[
||g∗|| − 1√

2

]
(because α = ||dz||)

≤||dz||

[√
NV − 1

NV
− 1√

2

]
,

/
1√
2
||dz|| (12)

The second-last inequality is obtained from eqn. (3), which gives that:

||g∗|| ≤

[
(NV − 1)2 +

∑NV−1
k=1 12

NV
2

] 1
2

≤
[
NV

2 −NV

NV
2

] 1
2

≤
[
NV − 1

NV

] 1
2

.

Now, for an arbitrary graph, substitute d̂z = ΛV>dz in eqn. (12), where VΛV> is the eigen-system
of the graph Laplacian LG , to give:

ε /
1√
2
||d̂z|| = 1√

2
||Λ−V>dz|| ≤ λ−1

min√
2
||dz||. (13)
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C Functional Networks

Functional networks are routinely defined by the “temporal correlations between spatially remote
neurophysiological events” [3]. The following section discusses an algorithm of computing the
functional connectivity (i.e. correlations) ρ between voxels that is consistent, sparse and computa-
tionally efficient. Because N � T , the standard covariance estimator is badly conditioned, and its
eigen-system is inconsistent [4]. Therefore, regularization is required to impose sensible structure
on the estimated covariance matrix while being computationally efficient.

First, the images are smoothed with a Gaussian kernel (FWHM=8mm) to increase spatial coherence
of the time-series data. Next, spatially proximal voxels are grouped into a set of Ñ < N spatially
contiguous clusters using hierarchical agglomerative clustering (HAC) [1] as described in C.1. Then,
cluster-wise covariances are computed and regularized using adaptive soft shrinkage [4] using the
procedure detailed in C.2. Finally, estimates of voxel-wise correlations are then recomputed from
the regularized cluster-wise correlations as per C.3.

If i, j = 1 . . . N index two cortical voxels, then the functional connectivity map ρ[i, j] ∈ [−1, 1]
for all 1 ≤ i, j ≤ N is consistent and extremely sparse. It is also easy to verify that ρ is positive
definite. The results of this procedure on the distribution of the functional connectivity estimates on
the data-set of Section. 4.2 are shown in Fig. 1
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(a) Raw correlations
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Figure 1: (a) Without any regularization, most of the mass of the distribution is in concentrated in small non-
zero correlations, while the strong correlations are only a fraction of the total. (b) The smoothing procedure
shifts the whole distribution towards the right, by strengthening all correlations. (c) The hierarchical cluster-
ing procedure boosts strong correlations without affecting weak correlations. (d) Finally, the shrinkage step
sparsifies the correlation matrix, with most correlations set to zero.

In the discussion that follows define y , {y1 . . .yT } as the fMRI time–series data with N voxels
and T scans, where y[i] is the time–series data of voxel i = 1 . . . N .

C.1 Hierarchical Agglomerative Clustering

Algorithm 1 describes the HAC procedure used to group together spatial proximal and functionally
correlated voxels.

The time–series for the new cluster ck is defined as y[k] = 1/nk
∑
ci∈ck

y[i], and for a new cluster
ck = (ci, cj) can be efficiently updated according to y[k] = (niy[i] + njy[j])/(ni + nj).
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begin // Initialization
For each voxel i, create one cluster ci of size ni = 1
Each ci is associated with a time–course y[i]

end
while Number of clusters greater than specified value do

Find two clusters ci and cj that are spatially adjacent to each other and merge them into a new cluster
ck = (ci, cj), if and only ifVar {ck} is minimum over all i, j
Remove clusters ci and cj from the set of clusters, and add ck

end
Algorithm 1: Hierarchical Agglomerative Clustering

The variance of a cluster ck is Var {ck} = (1/nkT )
∑
ci∈ck

∑T
t=1(y[i] − y[k])2, and is efficiently

updated through the variance separation theorem:

Var {ck} =
niVar {ci}+ njVar {cj}

ni + nj
−
∑T
t=1(y[i]− y[k])2

T (ni + nj)
.

After hierarchical clustering, the covariance σ[k1, k2] , Var {ck1 , ck2} between two clusters ck1 and
ck2 is estimated as:

σ[k1, k2] =
1

T

T∑
t=1

yt[k1]yt[k2]−

(
1

T

∑
t

yt[k1]

)
1

T

(∑
t

yt[k2]

)
.

HAC is repeated until the number of clusters Ñ ≈ 0.25×N . This procedure has a two-fold benefit
of reducing the dimensionality of the estimation problem while simultaneously increasing the SNR
of the data through averaging. Table 1 shows that the clusters, after Gaussian smoothing, are larger
and their sizes are more uniform for the same number of HAC–steps as compared to those without
smoothing.

HAC–
steps 0.5×N 0.75×N 0.875×N

FWHM Ñ
Avg
mm3 Std.dev Ñ

Avg
mm3 Std.dev Ñ

Avg
mm3 Std.dev

0mm 0.69 11.59 6.32 0.51 15.68 14.62 0.36 22.22 30.33
4mm 0.63 12.69 4.85 0.42 19.04 9.16 0.29 27.58 17.41
8mm 0.58 13.79 3.98 0.34 23.52 7.70 0.22 36.36 12.56

Table 1: Effect of FWHM of the Gaussian kernel on the number of clusters Ñ (as a fraction
of N ). The mean and standard deviation of cluster sizes after a certain number of HAC–steps are
shown. Values are for the data-set described in Section. 4.2.

C.2 Shrinkage

Next, cluster-wise covariances are computed and regularized using adaptive soft shrinkage [4].
sλ(σ[k1, k2]) = sgn(σ[k1, k2])

(
|σ[k1, k2]| − λ|σ[k1, k2]|−1)

+
. (14)

This estimator has the property that the shrinkage is continuous with respect to σ[k1, k2], but the
amount of shrinkage decreases as σ[k1, k2] increases resulting in less bias than the standard soft
shrinkage estimator. The threshold parameter λ is selected by minimizing the risk function R(λ) =
E||sλ(σ) − σ||2. Under certain regularity assumptions about the data, a closed–form estimate of the
optimal threshold is obtained as [2]:

λ ≈
∑
k1 6=k2 Var {σk1,k2}∑

k1 6=k2 σ
2
k1,k2

, (15)

whereVar {[}σk1,k2 ] is estimated as:

T

(T − 1)3

T∑
t=1

(
yt[i]yt[j]−

T∑
t′=1

yt′ [i]yt′ [j]

)2

.

This estimator is “sparsistent” [4], that is, in addition to being consistent, it estimates true zeros as
zeros and non-zero elements as non-zero with the correct sign, with probability tending to 1.
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C.3 Voxel-wise Correlations

The covariance between the time-series y[i] of a voxel i belonging to cluster ck and the cluster
average time-series y[k] is:

σ[i, k] =
1

T

∑
t

yt[i]yt[k]−

(
1

T

∑
t

yt[i]

)(
1

T

∑
t

yt[k]

)
,

and the correlation coefficient is:

ρ[i, k] =
σ[i, k]√

σ[i, i]σ[k, k]
. (16)

Also, the smoothed (i.e. conditionally expected) time-series y[i|k] , E {[}y[i] | y[k]] is:

y[i|k] =
1

T

∑
t

yt[i] + σ[i, k]σ[k, k]−1

(
y[k]− 1

T

∑
t

yt[k]

)
, and σ[i|k] = σ[i, i]− σ[i, k]2

σ[k, k]
. (17)

is its conditional variance σ[i|k] , Var {[}y[i] | y[k]].

Therefore, the expected (smoothed) correlation between two voxels i and j belonging to clusters cki

and ckj
respectively are obtained by substituting eqns. 17 and 16 to get:

ρ[i, j] =
Cov {y[i|ki],y[j|kj ]}√

σ[i|ki]σ[j|kj ]
= sλ(σ[ki, kj ]).

ρ[i, ki]ρ[j, kj ]√
(1− σ[ki, ki]ρ[i, ki]2) (1− σ[kj , kj ]ρ[j, kj ]2)

. (18)
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