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1 VARIATIONAL INFERENCE FOR MODELS

1.1 Details of Variational Inference for HBLR-M2

Generally in Bayesian Inference, computing the posterior distribution of parameters in closed form
solution might not be possible. In such situations, one often resorts to computing an approximate
posterior which is ‘close’ to the true posterior distribution. For HBLR-M2, the posterior of the
model parameters is given by,
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The posterior has a logistic likelihood term with the W in (1) and with a Gamma and Normal prior
over &, W in (2). The convolution between a normal-gamma prior and logistic likelihood cannot
be computed in closed form; therefore one has to resort to approximate methods to calculate the
posterior.

Variational methods try to compute an approximate posterior having a simplified factored form
which is closest in KL divergence to the true posterior. They rely on the following bound for the
log-marginal probability of D. For any distribution ¢(W, ),
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= B, [logp(W, a, D)] + H(q) (5)

The (3) can be easily verified by combining the RHS terms.



In order to compute such a ¢, we start by assuming a simplified factored form using independent
distributions for each parameter. Note that this does not neglect the dependence between the var-
ious parameters in the model; it just finds the suitable factored form which best approximates the
dependencies.
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Here ¢(W, o) = ¢(W|u, ¥)g(a|T, v) where T, v, , X are variational parameters which we can
optimize one at a time to maximize (4).

For example, to optimize w,, we differentiate P(D) w.r.t g(wy),
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where —w, denotes all parameters other than w,,. Similary,

log ¢* (v |1y, vy) = E oy [logp(W, @, D)dWda] + constant (7)

In (7) and (6), to update the parameters we need to calculate the expected log-likelihood under the
variational posterior i.e. E,[logp(W, a, D)].

Ey[logp(W, o, D)] = E [log P(D|W, a)] + E, [log P(W, av)]

Where,
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The RHS term in the above equation is not directly computable. Therefore we use a suitable lower-
bound proposed in [1], to bound the log-likelihood term from below.
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Here we have introduced variational parameter 3, and &, for every x € D,y € Y. In order to
get the tightest possible bound, we can optimize over these variational parameters. We discuss this
optimization later in the text.
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1.1.1  Optimizing ¢*(w,)

Combining the above equation with (8) and (6), the update for parameter w,,y € 1" can be written
as
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Since ¢*(w,) is assumed to be a normal distribution, we can directly match the sufficient statistics
i.e. mean and the covariance matrix and set 1, and ¥, as in the paper. Note that we have used the
fact that

£y 51 = (5 o o] By 075y o)

( ) (2) (d)
Ty Ty
dlag< Ok (2),...,U§d))>

For ¢*(wy),y ¢ T, fortunately the w, is not present in the logistic function, therefore, we can use
just (8) to match the likelihood with (6) and get the equations as in the paper.

1.1.2  Optimizing ¢* (o)
For optimizing ¢* (o), we essentially follow the same strategy as above. Each optimize each ay)
by matching (8) and (7)
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Since ¢* () is a gamma distribution, we simply match the sufficient statistcs and set update the as
in the paper. Note that we have used the fact that
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1.2 Extension to HBLR-M1

Most of the derivation simply goes through changed except that az(,l) = ozy(f) = ... = ay. Although,
this makes a difference only in how the a’s are updated; we present the full update equations.
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and e is a unit vector.
1.3 Extension to HBLR-M3

The extension to HBLR-M3 follows on similar lines.
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2 Empirical Bayes

In this section, we show why Empirical Bayes route for learning the hyperparameters in our model
does not work. Let us model M1 for instance. The general procedure for Empirical Bayes is to
maximize the marginal likelihood w.r.t to the hyperparameters and get point estimates for them
(another approach would be use MCMC, which we do not pursue in the interested of scalability).

In M1, the marginal likelihood of the data can be computed as

P(D|a,b)o</ P(a|a7b)/P(D|W)P(W|a)
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As before the integral cannot be computed in closed form and hence cannot be maximized an-
alytically. Therefore we use the variational lower-bound as a proxy which is more amenable to
maximization.
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Note that the maximization can be carried out independently for all the a,,’s. This leads to a Gamma
distribution type MLE of the following form,

(ay,,by,) = arg max ay log(b,) — logT'(ay) + (a, — 1)E,[log(a,)] — by Eq[ay]
Note that Ey[log(ay )] = ¥(7y) —log(vy) and E4[log(cy)] = %; both of twhich can be considered

as constants in the maximization. But since there is exactly only one sample, one cannot learn the
ay, by effectively [2].

One way to overcome this, is to assume that all the a,’s are commonly drawn from a single a, b.
This enables a larger number of samples to succesfully estimate the the single a, b. The downside is
that, this commonly shrinks all the ay,’s to the expected value of the dlstrlbutlon , which might be
not a good thing.

We conducted several preliminary experiments were we tried sharing all «,’s under single a, b as
well sharing the «,’s of sinling nodes etc. None of the models seemed to achieve competitive
performance. For example, using a common a, b on the best performing model M3 on the CLEF
dataset achieved a Micro-F of of 80.32 and Macro-F of 54.82 both of which are lower than M3-
var. Further investigation is required to establish how empirical can be succesfully applied.
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