
Supplementary Material for Repulsive Mixtures

1 Supplementary concerning section 2.4

A possible issue with our repulsive mixture prior is that the full conditionals are nonstandard, com-
plicating posterior computation. To address this, we propose a data augmentation scheme, introduc-
ing auxiliary slice variables to facilitate sampling [1]. In particular, letting g0 be a conjugate prior,
introduce a latent variable u which is jointly modeled with γ through

π(γ1, . . . , γk, u) ∝

(
k∏
h=1

g0(γh)

)
1 {h(γ1, . . . , γk) > u}

Here 1(A) is the indicator function, equalling 1 if the eventA occurs, otherwise being 0. Marginaliz-
ing out u, we recover the original density π(γ1, . . . , γk). This algorithm is a slice sampling algorithm
[4], a class of Markov chain Monte Carlo algorithms widely utilized for posterior inference in infi-
nite mixture models [3]. To sample from 1, the derivation ofAj and therefore the invertibility of h is
essential. For a repulsion function defined as (4), define Aj ≡

⋂
{s:s6=j} [γj : g{d(γs, γj)} > u]. As

long as g is invertible in its argument, the setAj can be calculated, making sampling straightforward.
When the repulsion function is defined as (3), one can introduce a latent variable for each product
term. Finally, when m > 1, the location parameter vector can be sampled element-wise from the
truncated distribution. Details on full conditional distributions can be found in the supplementary
material. For simplicity, assume that h is defined as (4), g0 is the m-variate standard normal density
and φ is the m-variate spherical normal kernel. Let si = 1, . . . , k be the variable indicating which
cluster the ith observation belongs to. Let nj be the number of data points in the jth cluster and let
ȳj be the average of observations in the jth cluster. Let αp = (α1 + n1, . . . , αk + nk). Then the
sampling algorithm can be summarized by the following steps:

Step 1. Update si for i = 1, . . . , n by multinomial sampling

(si|−) ∼Multinomial(l1, . . . , lk), lj =
pjφ(yi; γj , σjI)∑k
h=1 phφ(yi; γh, σhI)

;

Step 2. Sample (γj , σj) for j = 1, 2, . . . , k from

(γj |−) ∼ N
{

(1 + nj/σj)
−1ȳjnj/σj , I(1 + nj/σj)

−1
}

1(γj ∈ Aj)

(1/σj |−) ∼ Ga

aσ +
njm

2
, bσ +

1

2

∑
{i:si=j}

(yi − γj)T (yi − γj)


Step 3. Sample u and p from

(u|−) ∼ Un {0, h(γ)} , p ∼ Dirichlet (αp)

2 Supplementary material concerning section 4

Let us provide more details about the densities in figure 2. Density (I) is a Students t density with
eight degrees of freedom. Density (IIa) is a two-components mixture of Gaussians with mixture
weights (0·3, 0·7), location parameters (−0·8, 0·8) and variances (0·2, 0·2). Density (IIb) is a
mixture having the same weights and scale parameters as density (IIa) but location parameters
(−1·5, 1·5), resulting in better separated clusters. Density (IIIa) is a mixture of a Gaussian with
mean 0·7, variance 0·2 and weight 0·7 and a Pearson density with mean −0·7, variance 0·2, weight
0·3, skewness parameter −0·5 and kurtosis parameter 3. Density (IIIb) is a mixture having the
same weights, scale parameters, skewness and kurtosis parameters as density (IIIa) but having
location parameter (−1·2, 1·2), resulting in better separated clusters. Density (IV ) is a bivariate
mixture of two Gaussians with weight 0·5, location parameters (0, 0) and (2, 1), variances (0·2, 0·2)
and (0·1, 0·1) and correlation coefficients 0·7 and 0.

Hyperparameters aσ and bσ for the density of the scale parameter were set to 3 and 1 respectively.
Parameters αjs were all set equal to the same value α̃ and in accordance with [5]’s specification for
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the density of the weights. For the non-repulsive model, the kernel locations were given independent
standard normal priors. For the repulsive model, we considered a repulsion function defined as (4),
with g defined as (5) and we chose g0 to be the standard normal. Concerning parameters involved
in the repulsion function, ν was set equal to 2 while τ was chosen to guarantee a certain separation
probability. In particular, the probability used to calibrate τ was chosen to be 0·90 and c in definition
2 was fixed at 2.

The misclassification error was established in terms of divergence between the true similarity matrix
and the posterior similarity matrix. Let n be the number of observations, then the similarity matrix
is a (n × n) matrix with (i, j) element equal to one if the jth and the ith observation belong to the
same group and zero otherwise. As for the true similarity matrix, observations drawn from the same
mixture component were considered as belonging to the same group. Let S be the true similarity
matrix and Ŝh be the similarity matrix obtained at the hth Markov chain Monte Carlo iteration. Let
S(i, j) be the (i, j) element of S and define mh as

mh =

n∑
i=1

n∑
j=i+1

1(Ŝh(i, j) 6= S(i, j))

with 1(A) being the indicator function, equalling 1 if the event A occurs, otherwise being 0. The
misclassification error at the hth iteration was calculated dividing mh by the total number of pairs
of n elements.

An approximation of the Kullback-Leibler divergence at the hth iteration was derived as

klh =

s∑
j=1

log f0(y0j)/f(y0j ; θh)

with f0 being the true density, f the fitted density, θh the posterior sample at the hth iteration of
parameters involved in f and y0j for i = 1, . . . , s being s draws from the true density f0. In all
simulation examples s was set to 10, 000.

As mentioned in section 4, knowing that the smoothing parameter α̃ directly affects the behavior of
the mixture weights, it might be argued that under an accurate choice of α̃, the non-repulsive prior
may perform as well as the repulsive prior in emptying the extra components. Hence, we ran the
non-repulsive model for different values of α̃. This comparison was done by utilizing dataset (IIb)
in figure 2. Table 1 provides posterior summary statistics for parameters involved in the repulsive
model and non-repulsive model for different choices of α̃. Clearly, as α̃ decreases, the non-repulsive
model empties the extra components. However, we also see that the 95% credible interval of the
location parameters now does not include the true value. This might be explained by the fact that as
lower values of α̃ are considered, the posterior can concentrate on too few components leading to
degenerate results in terms of estimates of specific component parameters.

As mentioned in section 2.4, parameter τ in the repulsion function was calibrated to reach a par-
ticular separation probability. In order to assess the sensitivity of results to parameter’s calibration,
the KL divergence and the sum of extra weights were computed for different choices of separation
probability. For this comparison, datasets (IIa) and (IIb) in figure 2 were considered. In practice,
at each Markov chain Monte Carlo iteration, an approximation of the KL divergence and the sum of
extra weights were obtained. Figure 1 and 2 show the median of these quantities over Markov chain
Monte Carlo iterations. Clearly, as the probability of separation among clusters increases, the KL
divergence between the fitted density and the true density increases while the sum of extra compo-
nents decreases. However, as the sample size increase from n = 100 to n = 1000 the sensitivity of
the two quantity of interest to the parameter’s choice appears to vanish. Therefore, we expect that as
the sample size increases, the choice of the separation probability will not excessively affect results.

3 Assumptions, cited theorems and proofs

3.1 Assumptions

3.1.1 Assumptions B1-B5

Assumptions B1-B5 corresponds to assumptions A1-A5 in [5]. Assumptions differ only in the con-
ditions concerning the prior on the component-specific parameters in assumption A5. In condition
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B5, we assume that π is defined as (2) and h is defined as either (3) or (4). For the sake of clarity,
let us state assumption B1:

B1) There exists a q ≥ 0 such that for δn = (log n)qn−1/2 the following holds

lim
M→∞

lim sup
n→∞

E0
n {Π (‖f − f0‖1 ≥Mδn|Yn)} = 0

3.1.2 Conditions (i), (ii) and (iii) in theorem 3.1 of [6]

(i) The prior on σ has a continuous and positive Lebesgue density ψ on an interval containing σ0

and its distribution function Ψ, for constants e1, e2, e3 > 0, satisfies

Ψ(s) ≤ exp(−e1s
−e2) as s→ 0 and 1−Ψ(s) ≤ s−e3 as s→∞

(ii) The prior for the number of components is such that, for constants d1, d2 > 0,

0 < µ(k) ≤ d1 exp(−d2k) for all k ∈ N

(iii) For each k, the prior for the weights is a Dirichlet with parameters (α1, . . . , αk) such that, for
constants a1, a2 > 0, a3 ≥ 1 and for 0 < ε ≤ 1/(a3k) and j = 1, . . . , k

a2ε
a1 ≤ αj ≤ a3

3.2 Cited theorems

Theorem 1 ([2]). Let πn be a sequence of priors on a class of densities F equipped with a metric
d that can be either the Hellinger or the one induced by the L1-norm. Assume that for positive
sequences ε̄n, ε̃n → 0 such that nmin(ε̄n, ε̃n)→∞, constants d1, d2, d3, d4 > 0 and sets Fn ⊆ F ,
we have

logD(ε̄n,Fn, d) ≤ d1nε̄
2
n (1)

πn(F \ Fn) ≤ d3 exp
{
−(d2 + 4)nε̃2n

}
(2)

πn
{
BKL(f0; ε̃2n)

}
≥ d4 exp(−d2nε̃

2
n) (3)

where BKL(f0; ε̃2n) =
{
f :
∫
f0 log(f0/f) ≤ ε̃2n;

∫
f0 log(f0/f)2 ≤ ε̃2n

}
.

Then, for εn = max(ε̄n, ε̃n) and a sufficiently large constant M > 0, the posterior probability

πn{f : d(f, f0) > Mεn|Yn} → 0

in Pn0 probability, as n→∞.

3.3 Proofs

Proof of lemma 1. By assumption B0, µ(k = k0) > 0. We consider the case f is a finite mixture
with k0 components. By assumption A1, for each η > 0 there is a corresponding δ > 0 such that, for
any given y ∈ Y and for all γ1, γ2 ∈ Γ with |γ1 − γ2| < δ, we have that |φ(y; γ1)− φ(y; γ2)| < η.
Let Sδ = Γδ × Pδ with Γδ = {γ : |γj − γ0j | ≤ δ, j ≤ k0} and Pδ = {p : |pj − p0j | ≤ δ, j ≤ k0}.
By assumption A1 and A2, for any given y and for any η > 0, there is a δ > 0 such that |f0−f | ≤ η
if θ ∈ Sδ . This means that, f → f0 as θ → θ0, for any given y. Equivalently, we can say that
| log(f0/f)| → 0 pointwise as θ → θ0. Notice that

|log (f0/f)| ≤
∣∣∣∣log

{
sup
γ∈D0

φ(γ)

}
− log

{
inf
γ∈D0

φ(γ)

}∣∣∣∣
By assumption A3 and applying the dominated convergence theorem, for any ε > 0 there is a δ > 0
such that

∫
f0 log(f0/f) < ε if θ ∈ Sδ . By the independence of the weights and the parameters of

the kernel,
Π(KL(f0, f) < ε) ≥ λ(Pδ)π(Γδ)

Assumption A4 combined with the fact that {γ : ||γ−γ0||1 ≤ δ} ⊆ Γδ result in π(Γδ) > 0. Finally,
since λ = Dirichlet(α), it can be shown that λ(Pδ) > 0.
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Proof of lemma 2. Let D = {γ : ||γ − x||1 < υ/2}. By the assumptions on h, given a vector x
satisfying condition A4 in lemma 2, h(γ) > 0 for γ such that d(γs, xs) < υ/2 for s = 1, . . . , k.
Since,

D ⊆ {γ : d(γs, xs) < υ/2; s = 1, . . . , k},
it follows that h(γ) > 0 onD. By assumption, g0 is positive on Γ, therefore it follows that π(γ) > 0
on D.

Proof of lemma 3. To prove lemma 3 we need to show that the three conditions of theorem 2.1 in [2]
are satisfied. First, defineD(ε,F , ds) as the maximum number of points in F such that the distance,
with respect to metric ds, between each pair is at least ε. Let ds be either the Hellinger metric or the
one induced by the L1-norm. For given sequences kn, an, un ↑ ∞ and bn ↓ 0 define

F (k)
n =

f : f =

k∑
j=1

pjφ(γj , σ), γ ∈ (−an, an)k, σ ∈ (bn, un)


and Fn = ∪knj=1F

(j)
n . As it is shown in [6], for constants f2 ≥ f1 > 0 and l1, l2, l3 > 0,

derived below to satisfy condition (2) and (3) in [2], and defining f1 log n ≤ kn ≤ f2 log n,
an = l3

(
log ε̄−1

n

)1/2
, bn = l1(log ε̄−1

n )−1/e2 and un = ε̄−l2n , logD(ε̄n,Fn, ds) . nε̄2n with
ε̄n = n−1/2 log n.

Let An,j = (−an, an)j . In order to show condition (2) of theorem 2.1. in [2], we need to show that
there is a constant q1 > 0 such that π(ACn,k) . exp(−q1a

2
n). From the exchangeability assumption

it follows
pr(ACn,k|k = s) =

∑s
j=1

s!
j!(s−j)!π

(
ACn,j ×An,s−j

)
≤ s

∑s
j=1

(s−1)!
(j−1)!(s−j)!π

(
ACn,j ×An,s−j

)
≤ sπm(ACn,1)

Therefore, condition C1 implies that, for a positive constant q1 we have π(ACn,k) .
E(k) exp(−q1a

2
n) with E(k) <∞ by condition (ii). Given a positive constant z2 chosen to satisfy

condition (3) in theorem 2.1 of [2], let f1 ≥ (z2+4)/d2, l1 ≤ {e1/4(z2 + 4)}1/e2 , l2 ≥ 4(z2+4)/e3

and l3 ≥ {4(z2 + 4)/q1}1/2. Under these values of f1, l1, l2 and l3, following [6], assumptions (i),
(ii) and assumption C1 imply Π(F \ Fn) . exp

{
−(z2 + 4)nε̃2n

}
with ε̃n = n−1/2(log n)1/2.

To show condition (3) of theorem 2.1 in [2], we can again follow the proof of theorem 3.1. in [6].
The only thing we need to show is that, there are constants u1, u2, u3 > 0 such that for any εn ≤ u3

π(||γ − γ0||1 ≤ εn) ≥ u1 exp {−u2k0 log(1/εn)}
that is guaranteed by condition C2. Therefore, it can be easily showed that, for sufficiently large n,
z2 > 0 and ε̃n = n−1/2(log n)1/2, Π

{
BKL(f0, ε̃

2
n)
}
& exp(−z2nε̃

2
n).

Proof of lemma 4. First, let us check that condition C1 is satisfied. Clearly, under the assumptions
on h, π leads to exchangeable atoms. Under the assumptions on π, the following holds

πm(|γ1| ≥ t) =

∫
|γ1|≥t

πm(γ1)dγ1 ≤ c1c2
∫
|γ1|≥t

g0(γ1)dγ1

with c1 and c2 defined as in (2). It follows that there exists a constant n1 > 0 such that πm(|γ1| ≥
t) . exp(−n1t

2).

Now let us verify condition C2. Assumptions on h imply that for any 0 < ε < 1 there is a cor-
responding 0 < δ = g−1(ε) and constants w1 > 0 such that h(γ) ≥ w1ε

k0 for all γ satisfying
min{(s,j):s<j} d(γj , γs) ≥ δ. Let u3 be defined as

u3 = min [ε1/2, g (δ1)]

with ε1 defined as in assumption B0 and δ1 = ε1(1 − 1/k0). By assumption ε < u3 and therefore
δ < δ1. Let us define M(γ, x) and N(γ, x) as follows,

M(γ, x) =

{
γ : min
{(s,j):s<j}

d(γj , γs) ≥ x
}
, N(γ, x) = {γ : |γj − γ0j | ≤ x; j = 1, . . . , k0}
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Then,

π(||γ − γ0||1 ≤ ε) ≥
∫
{||γ−γ0||1≤ε}∩M(γ,δ)

π(γ)dγ

&
∫
{||γ−γ0||1≤ε}∩M(γ,δ)

εk0
∏k0
j=1 g0(γj)dγ

&
∫
N(γ,ε/k0)∩M(γ,δ1)

εk0
∏k0
j=1 g0(γj)dγ

Now let us show that N(γ, ε/k0) ⊆ M(γ, δ1). Consider the pair (s, j) with s 6= j. Without loss
of generality assume γ0s > γ0j . Now, consider the possible values of (γj , γs) contained in the set
N(γ, ε/k0). The smallest distance between values of γs and γj contained in N(γ, ε/k0) is

(γ0s − ε/k0)− (γ0j + ε/k0) ≥ ε1 − 2ε/k0 ≥ ε1(1− 1/k0) = δ1

Since the previous holds for any pair (s, j) we have N(γ, ε/k0) ⊆M(γ, δ1). Therefore,

π(||γ − γ0||1 ≤ ε) &
∫
N(γ,ε/k0)

εk0
∏k0
j=1 g0(γj)dγ

& εk0 exp {−g1k0 log(1/ε)}
& exp {−(g1 + 1)k0 log(1/ε)}

for a constant g1 > 0.

Proof of theorem 1. Only for this proof and for ease of notation the density f will be referred as
fθ. Define the non identifiability set as T = {θ : fθ = f0}. In order to define each vec-
tor in T , let 0 = t0 < t1 < t2 . . . < tk0 ≤ k and γj = γ0i for j ∈ Ii = {ti−1 + 1, ti}.
Let p0i =

∑ti
j=ti−1+1 pj and pj = 0 for j > tk0 . Define qj = pj/p0i for j ∈ Ii. De-

fine An =
{

minσ∈Sk

(∑k−k0
i=1 pσ(i)

)
> δnMn

}
and A′n = An ∩ {‖f − f0‖1 ≤ Mδn}. Let

Dn =
∫
{‖f−f0‖1<δn} exp(ln(θ) − ln(θ0))d(π × λ)(θ) with ln(θ0) being the log-likelihood evalu-

ated at θ0. Along the line of [5]’s proof, to prove theorem 1 we need to show that for any ε > 0 there
are positive constants m1,m2 and a permutation σ ∈ Sk such that

Dn ≥ m1n
−s(k0,α)/2 (4)

Π(A′n) ≤ m2δ
s(k0,α)
n M ᾱ−m/2−r2

n (5)

with s(k0, α) = k0 − 1 + mk0 +
∑k−k0
j=1 ασ(j). Following [5]’s proof, we can show that, under

condition B5, (4) is satisfied for sufficiently large n. Concerning (5), [5] showed that on A′n, there
is a set Ii containing indices j1 and j2 such that

|γj1 − γ0i| ≤ (δn/qj1)
1/2

, |γj2 − γ0i| ≤ (δn/qj2)
1/2

with qj1 > ε/k0 and qj2 > δnMn/2. The triangle inequality implies

|γj1 − γj2 | ≤ 2 {δn/min(qj1 , qj2)}1/2

Now, for sufficiently large n, min(qj1 , qj2) > δnMn/2 and therefore |γj1 − γj2 | .M
−1/2
n . Since g

is bounded above by a positive constant, it exists a constant c > 0 such that

h(γ) ≤ cg {d(γj1 , γj2)} ≤ cg
(
M−1/2
n

)
(6)

for γ ∈ A′. Let the prior probability of the set A′n be defined as Π(A′n) =
∫
A′n

d(π × λ)(γ × p).
To find an upper bound for this integral, directly apply the proof of [5] showing that Π(A′n) ≤
g
(
M
−1/2
n

)
δ
s(k0,α)
n M

ᾱ−m/2
n . By assumption, for sufficiently large n, g

(
M
−1/2
n

)
≤ r1M

−r2
n .

Letting sr2 = r2 +m/2− ᾱ, it follows

Π(A′n) ≤M−sr2n δs(k0,α)
n
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Table 1: Percentiles 2·5th, 50th and 97·5th of location parameters involved in the two components
with highest weights and sum of extra weights under repulsive atoms and non-repulsive atoms for
different values of α̃ under dataset (IIb)

n=100 n=1000
Non-Repulsive Repulsive Non-Repulsive Repulsive

α̃ 1/3 1/10 1/100 1/3 1/3 1/10 1/100 1/3

Parameter 1 (truth 1·50)
2·5 1·59 1·61 1·61 1·53 1·51 1·52 1·52 1·49
50 1·62 1·61 1·61 1·64 1·52 1·52 1·52 1·53
97·5 1·68 1·64 1·63 1·75 1·54 1·53 1·52 1·56

Parameter 2 (truth −1·50)
2·5 −1·50 −1·48 −1·42 −1·70 −1·51 −1·50 −1·49 −1·55
50 −1·39 −1·39 −1·39 −1·52 −1·48 −1·48 −1·48 −1·49
97·5 −1·21 −1·28 −1·32 −1·34 −1·44 −1·47 −1·47 −1·44

Extra weights sum (×103)
2·5 4 0 0 1 1 0 0 0
50 69 8 1 10 12 1 1 1
97·5 277 139 15 43 138 25 4 4
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Figure 1: Plot of KL divergence (I) and sum of extra weights (II) for different choice of separation
probability (x axis) under dataset (IIa) for n = 100 (solid) and n = 1000 (dash) and dataset (IIb)
for n = 100 (dash-dot) and n = 1000 (dot) under a mixture of six components
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Figure 2: Plot of KL divergence (I) and sum of extra weights (II) for different choice of separation
probability (x axis) under dataset (IIa) for n = 100 (solid) and n = 1000 (dash) and dataset (IIb)
for n = 100 (dash-dot) and n = 1000 (dot) under a mixture of ten components
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