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Abstract

In many large economic markets, goods are sold through sequential auctions.
Examples include eBay, online ad auctions, wireless spectrum auctions, and the
Dutch flower auctions. In this paper, we combine methods from game theory and
decision theory to search for approximate equilibria in sequential auction domains,
in which bidders do not know their opponents’ values for goods, bidders only par-
tially observe the actions of their opponents’, and bidders demand multiple goods.
We restrict attention to two-phased strategies: first predict (i.e., learn); second,
optimize. We use best-reply dynamics [4] for prediction (i.e., to predict other bid-
ders’ strategies), and then assuming fixed other-bidder strategies, we estimate and
solve the ensuing Markov decision processes (MDP) [18] for optimization. We
exploit auction properties to represent the MDP in a more compact state space,
and we use Monte Carlo simulation to make estimating the MDP tractable. We
show how equilibria found using our search procedure compare to known equilib-
ria for simpler auction domains, and we approximate an equilibrium for a more
complex auction domain where analytical solutions are unknown.

1 Introduction

Decision-making entities, whether they are businesses, governments, or individuals, usually interact
in game-theoretic environments, in which the final outcome is intimately tied to the actions taken
by others in the environment. Auctions are examples of such game-theoretic environments with
significant economic relevance. Internet advertising, of which a significant portion of transactions
take place through online auctions, has had spending increase 24 percent from 2010 to 2011, globally
becoming an $85 billion industry [16]. The FCC has conducted auctions for wireless spectrum since
1994, reaching sales of over $60 billion.1 Perishable commodities such as flowers are often sold via
auction; the Dutch flower auctions had about $5.4 billion in sales in 2011.2

A game-theoretic equilibrium, in which each bidder best responds to the strategies of its opponents,
can be used as a means of prescribing and predicting auction outcomes. Finding equilibria in auc-
tions is potentially valuable to bidders, as they can use the resulting strategies as prescriptions that
guide their decisions, and to auction designers, as they can use the resulting strategies as predictions
for bidder behavior. While a rich literature exists on computing equilibria for relatively simple auc-
tion games [11], auction theory offers few analytical solutions for real-world auctions. Even existing
computational methods for approximating equilibria quickly become intractable as the number of
bidders and goods, and the complexity of preferences and decisions, increase.

1See http://wireless.fcc.gov/auctions/default.htm?job=auctions_all.
2See http://www.floraholland.com/en/.
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In this paper, we combine methods from game theory and decision theory to approximate equilibria
in sequential auction domains, in which bidders do not know their opponents’ values for goods,
bidders partially observe the actions of their opponents’, and bidders demand multiple goods. Our
method of searching for equilibria is motivated by the desire to reach strategies that real-world
bidders might actually use. To this end, we consider strategies that consist of two parts: a prediction
(i.e., learning) phase and an optimization phase. We use best-reply dynamics [4] for prediction (i.e.,
to predict other bidders’ strategies), and then assuming fixed other-bidder strategies, we estimate
and solve a Markov decision processes (MDP) [18] for optimization. We exploit auction properties
to represent the MDPs in a more compact state space, and we use Monte Carlo simulation to make
estimating the MDPs tractable.

2 Sequential Auctions

We focus on sequential sealed-bid auctions, with a single good being sold at each of K rounds. The
number of bidders n and the order in which goods are sold are assumed to be common knowledge.
During auction round k, each bidder i submits a private bid bki ∈ Bi to the auctioneer. We let
bk = 〈bk1 , . . . , bkn〉 denote the vector of bids submitted by all bidders at round k. The bidder who
submits the highest bid wins and is assigned a cost based on a commonly known payment rule.

At the end of round k, the auctioneer sends a private (or public) signal oki ∈ Oi to each bidder i,
which is a tuple specifying information about the auction outcome for round k, such as the winning
bid, the bids of all agents, the winner identities, whether or not a particular agent won the good, or
any combination thereof. Bidders only observe opponents’ bids if those bids are announced by the
auctioneer. Regardless, we assume that bidder i is told at least which set of goods she won in the
kth round, wki ∈ {∅, {k}}, and how much she paid, cki ∈ R. We let ψ(ok | bk) ∈ [0, 1] denote
the probability that the auctioneer sends the bidders signals ok = 〈ok1 , . . . , okn〉 given bk, and we let
ψ(oki | bk) express the probability that player i receives signal oki , given bk.

An auction history at round k consists of past bids plus all information communicated by the auc-
tioneer though round k − 1. Let hki = 〈(b1i , o1i ), . . . , (b

k−1
i ok−1i )〉 be a possible auction history at

round k as observed by bidder i. Let Hi be the set of all possible auction histories for bidder i.
Each bidder i is endowed with a privately known type θi ∈ Θi, drawn from a commonly known
distribution F , that determines bidder i’s valuations for various bundles of goods. A (behavioral)
strategy σi : Θ × Hi 7→ 4Bi for bidder i specifies a distribution over bids for each possible type
and auction history. The set Σi contains all possible strategies.

At the end of the K auction rounds, bidder i’s utility is based on the bundle of goods she won
and the amount she paid for those goods. Let X ⊆ {1, . . . ,K} be a possible bundle of goods,
and let v(X; θi) denote a bidder’s valuation for bundle X when its type is θi. No assumptions
are made about the structure of this value function. A bidder’s utility for type θi and history hK
after K auction rounds is simply that bidder’s value for the bundle of goods it won minus its cost:
ui(θi, h

K
i ) = v(∪Kk=1w

k
i ; θi)−

∑K
k=1 c

k
i .

Given a sequential auction Γ (defined by all of the above), bidder i’s objective is to choose a strategy
that maximizes its expected utility. But this quantity depends on the actions of other bidders. A
strategy profile ~σ = (σ1, · · · , σN ) = (σi, σ−i) defines a strategy for each bidder. (Throughout
the paper, subscript i refers to a bidder i while −i refers to all bidders except i.) Let Ui(~σ) =
Eθi,hKi |~σ[ui(θi, h

K
i )] denote bidder i’s expected utility given strategy profile ~σ.

Definition 1 (ε-Bayes-Nash Equilibrium (ε-BNE)). Given a sequential auction Γ, a strategy profile
~σ ∈ Σ is an ε-Bayes-Nash-equilibrium if Ui(~σ) + ε ≥ Ui(σ′i, σ−i) ∀i ∈ {1, . . . , n}, ∀σ′i ∈ Σi.

In an ε-Bayes-Nash Equilibrium, each bidder has to come within an additive factor (ε) of best-
responding to its opponent strategies. A Bayes-Nash equilibrium is an ε-Bayes-Nash equilibrium
where ε = 0. In this paper, we explore techniques for finding ε-BNE in sequential auctions. We also
explain how to experimentally estimate the so-called ε-factor of a strategy profile:

Definition 2 (ε-Factor). Given a sequential auction Γ, the ε-factor of strategy profile ~σ for bidder
i is εi(~σ) = maxσ′i Ui(σ

′
i, σ−i) − Ui(σi, σ−i). In words, the ε-factor measures bidder i’s loss in

expected utility for not playing his part of ~σ when other bidders are playing their parts.
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3 Theoretical Results

As the number of rounds, bidders, possible types, or possible actions in a sequential auction in-
creases, it quickly becomes intractable to find equilibria using existing computational methods. Such
real-world intractability is one reason bidders often do not attempt to solve for equilibria, but rather
optimize with respect to predictions about opponent behavior. Building on past work [2, 8], our first
contribution is to fully represent the decision problem for a single bidder i in a sequential auction Γ
as a Markov decision process (MDP).
Definition 3 (Full-history MDP). A full-history MDPMi(Γ, θi, T ) represents the sequential auction
Γ from bidder i’s perspective, assuming i’s type is θi, with states S = Hi, actions A = Bi, rewards
R(s) = {ui(θi, hKi ) if s = hKi is a history of length K; 0 otherwise}, and transition function T .

If bidder types are correlated, bidder i’s type informs its beliefs about opponents’ types and thus
opponents’ predicted behavior. For notational and computational simplicity, we assume that bidder
types are drawn independently, in which case there is one transition function T regardless of bidder
i’s type. We also assume that bidders are symmetric, meaning their types are all drawn from the same
distribution. When bidders are symmetric, we can restrict our attention to symmetric equilibria,
where a single set of full-history MDPs, one per type, is solved on behalf of all bidders.
Definition 4 (MDP Assessment). An MDP assessment (π, T ) for a sequential auction Γ is a set of
policies {πθi | θi ∈ Θi}, one for each full-history MDP Mi(Γ, θi, T ).

We now explain where the transition function T comes from. At a high level, we define (symmetric)
induced transition probabilities Induced(π) to be the transition probabilities that result from agent
i using Bayesian updating to infer something about its opponents’ private information, and then
reasoning about its opponents’ subsequent actions, assuming they all follow policy π. The following
example provides some intuition for this process.
Example 1. Consider a first-price sequential auction with two rounds, two bidders, two possible
types (“H” and “L”) drawn independently from a uniform prior (i.e., p(H) = 0.5 and p(L) = 0.5),
and two possible actions (“high” and “low”). Suppose Bidder 2 is playing the following simple
strategy: if type H: bid “high” with probability .9, and bid “low” with probability .1; if type L: bid
“high” with probability .1, and bid “low” with probability .9.

At round k = 1, from the perspective of Bidder 1, the only uncertainty that exists is about Bidder 2’s
type. Bidder 1’s beliefs about Bidder 2’s type is based solely on the type prior, resulting in beliefs
that Bidder 2 will bid “high” and “low” each with equal probability. Suppose Bidder 1 bids “low”
and loses to Bidder 2, who the auctioneer reports as having bid “high”. At round k = 2, Bidder
1 must update its posterior beliefs about Bidder 2 after observing the given outcome. This is done
using Bayes’ rule to find that Bidder 2 is of type “H” with probability 0.9. Based on its policy, in
the subsequent round, the probability Bidder 2 bids “high” is 0.9(0.9) + 0.1(0.1) = 0.82, and the
probability it bids “low” is 0.9(0.1) + 0.1(0.9) = 0.18. Given this bid distribution for Bidder 2,
Bidder 1 can compute her probability of transitioning to various future states for each possible bid.

More formally, denoting ski and aki as agent i’s state and action at auction round k, respectively,
define Pr(sk+1

i | ski , aki ) to be the probability of reaching state sk+1
i given that action aki was taken in

state ski . By twice applying the law of total probability and then noting conditional independencies,

Pr(s
k+1
i | ski , a

k
i ) =

∑
ak−i

Pr(s
k+1
i | ski , a

k
i , a

k
−i) Pr(a

k
−i | s

k
i , a

k
i )

=
∑
θ−i

∑
sk−i

∑
ak−i

Pr(s
k+1
i | ski , a

k
i , a

k
−i, s

k
−i, θ−i) Pr(a

k
−i | s

k
i , a

k
i , s

k
−i, θ−i) Pr(s

k
−i, θ−i | s

k
i , a

k
i )

=
∑
θ−i

∑
sk−i

∑
ak−i

Pr(s
k+1
i | ski , a

k
i , a

k
−i)︸ ︷︷ ︸Pr(a

k
−i | s

k
−i, θ−i)︸ ︷︷ ︸Pr(s

k
−i, θ−i | s

k
i , a

k
i )︸ ︷︷ ︸ (1)

The first term in Equation 1 is defined by the auction rules and depends only on the actions taken at
round k: Pr(sk+1

i | ski , aki , ak−i) = ψ(oki | ak). The second term is a joint distribution over oppo-
nents’ actions given opponents’ private information. Each agent’s action at round k is conditionally
independent given that agent’s state at round k: Pr(ak−i | sk−i, θ−i) =

∏
j 6=i Pr(akj | skj , θj) =∏

j 6=i π
θj (akj | skj ). The third term is the joint distribution over opponents’ private information,
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given agent i’s observations. This term can be computed using Bayesian updating. We compute
induced transition probabilities Induced(π)(ski , a

k
i , s

k+1
i ) using Equation 1.

Definition 5 (δ-Stable MDP Assessment). An MDP assessment (π, T ) for a sequential auction Γ is
called δ-stable if d(T,Induced(π)) < δ, for some symmetric distance function d.

When δ = 0, the induced transition probabilities exactly equal the transition probabilities from the
MDP assessment (π, T ), meaning that if all agents follow (π, T ), the transition function T is correct.

Define Ui(π, T ) ≡ Eθi,hKi |π,T [ui(θi, h
K
i )] to be the expected utility for following an MDP assess-

ment’s policy π when the transition function is T . (We abbreviate Ui by U because of symmetry.)
Definition 6 (α-Optimal MDP Assessment). An MDP assessment (π, T ) for a sequential auction Γ
is called α-optimal if for all policies π′, U(π, T ) + α ≥ U(π′, T ).

If each agent is playing a 0-optimal (i.e., optimal) 0-stable (i.e., stable) MDP assessment for the
sequential auction Γ, each agent is best responding to its beliefs, and each agent’s beliefs are correct.
It follows that any optimal stable MDP assessment for the sequential auction Γ corresponds to
a symmetric Bayes-Nash equilibrium for Γ. Corollary 2 (below) generalizes this observation to
approximate equilibria.3

Suppose we have a black box that tells us the difference in perceived versus actual expected utility
for optimizing with respect to the wrong beliefs: i.e., the wrong transition function. More precisely,
if we were to give the black box two transition functions T and T ′ that differ by at most δ (i.e.,
d(T, T ′) < δ), the black box would return maxπ |U(π, T )− U(π, T ′)| ≡ D(δ).
Theorem 1. Given such a black box, if (π, T ) is an α-optimal δ-stable MDP assessment for the
sequential auction Γ, then π is a symmetric ε-Bayes-Nash equilibrium for Γ, where ε = 2D(δ) +α.

Proof. Let Tπ = Induced(π), and let π∗ be such that (π∗, Tπ) is an optimal MDP assessment.
U(π, Tπ) ≥ U(π, T )−D(δ) (2)

≥ U(π∗, T )− (α+D(δ)) (3)
≥ U(π∗, Tπ)− (α+ 2D(δ)) (4)

Lines 2 and 4 hold because (π, T ) is δ-stable. Line 3 holds because (π, T ) is α-optimal.
Corollary 2. If (π, T ) is an α-optimal δ-stable MDP assessment for the sequential auction Γ, then
π is a symmetric ε-Bayes-Nash equilibrium for Γ, where ε = 2δK + α.

In particlar, when the distance between other-agent bid predictions and the actual other-agent bids
induced by the actual other-agent policies is less than δ, optimizing agents play a 2δK-BNE.

This corollary follows from the simulation lemma in Kakade et al. [9], which provides us
with a black box.4 In particular, if MDP assessment (π, T ) is δ-stable, then |U(π, T ) −
U(π,Induced(π))| ≤ δK, where d(T, T ′) =

∑
sk+1
i
|T (ski , a

k
i , s

k+1
i ) − T ′(ski , a

k
i , s

k+1
i )| and

K is the MDP’s horizon.

Wellman et al. [24] show that, for simultaneous one-shot auctions, optimizing with respect to pre-
dictions about other-agent bids is an ε-Bayes-Nash equilibrium, where ε depends on the distance
between other-agent bid predictions and the actual other-agent bids induced by the actual other-
agent strategies. Corollary 2 is an extension of that result to sequential auctions.

4 Searching for an ε-BNE

We now know that an optimal, stable MDP assessment is a BNE, and moreover, a near-optimal,
near-stable MDP assessment is nearly a BNE. Hence, we propose to search for approximate BNE
by searching the space of MDP assessments for any that are nearly optimal and nearly stable.

3Note that this result also generalizes to non-symmetric equilibria: we would calculate a vector of induced
transition probabilities (one per bidder), given a vector of MDP assessments, (one per bidder), instead of assum-
ing that each bidder abides by the same assessment. Similarly, stability would need to be defined in terms of a
vector of MDP assessments. We present our theoretical results in terms of symmetric equilibria for notational
simplicity, and because we search for symmetric equilibria in Section 5.

4Slightly adjusted since there is error only in the transition probabilities, not in the rewards.
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Our search uses an iterative two-step learning process. We first find a set of optimal policies π with
respect to some transition function T (i.e., π = Solve MDP(T )) using dynamic programming, as
described by Bellman’s equations [1]. We then update the transition function T to reflect what would
happen if all agents followed the new policies π (i.e., T ∗ = Induced(π)). More precisely,

1. Initiate the search from an arbitrary MDP assessment (π0, T 0)

2. Initialize t = 1 and ε =∞

3. While (t < τ) and (ε > κ)

(a) PREDICT: T t = Induced(πt−1)

(b) OPTIMIZE: for all types θi, πt = Solve MDP(θi, T
t)

(c) Calculate ε ≡ ε(πτ ) (defined below)
(d) Increment t

4. Return MDP assessment (πτ , T τ ) and ε

This learning process is not guaranteed to converge, so upon termination, it could return an optimal,
δ-stable MDP assessment for some very large δ. However, it has been shown to be successful exper-
imentally in simultaneous auction games [24] and other large games of imperfect information [7].

Monte Carlo Simulations Recall how we define induced transition functions (Equation 1). In
practice, the Bayesian updating involved in this calculation is intractable. Instead, we employ Monte
Carlo simulations. First, we further simplify Equation 1 using the law of total probability and noting
conditional independencies (Equation 5). Second, we exploit some special structure of sequential
auctions: if nothing but the winning price at each round is revealed, conditional on reaching state ski ,
the posterior distribution over highest opponent bids is sufficient for computing the probability of
that round’s outcome (Equation 6).5 Third, we simulate N auction trajectories for the given policy
π and multiple draws from the agent’s type distribution, and count the number of times each highest
opponent bid occurs at each state (Equation 7):

Induced(π)(ski , a
k
i , s

k+1
i ) = Pr(sk+1

i | ski , aki ,max ak−i)Pr(max ak−i | ski , aki ) (5)

= Pr(sk+1
i | ski , aki ,max ak−i)Pr(max ak−i | ski ) (6)

InducedN (π)(ski , a
k
i , s

k+1
i ) = ψ(oki | max(ak−i), a

k
i )

#(max(ak−i), s
k
i )

#(ski )
(7)

Solving the MDP As previously stated, we solve the MDPs exactly using dynamic programming,
but we can only do so because we exploit the structure of auctions to reduce the number of states
in each MDP. Recall that we assume symmetry: i.e., all bidders’ types are drawn from the same
distribution. Under this assumption, when the auctioneer announces that an Bidder j has won an
auction for the first time, this provides the same information as if a different Bidder k won an auction
for the first time. We thus collapse these two outcomes into the same state. This can greatly decrease
the MDP state space, particularly if the number of players n is larger than the number of auctions
K, as is often the case in competitive markets. In fact, by handling this symmetry, the MDP state
space is the same for any number of players n ≥ K.6 Second, we exploit the property of losing bid
symmetry: if a bidder i loses with a bid of b or a bid of b′, its beliefs about its opponents bids are
unchanged, and thus it receives the same reward for placing the same bid at either resulting state.

5A distribution over the next round’s highest opponent bid is only sufficient without the possibility of ties.
In ties can occur, a distribution over the number of opponents placing that highest bid is also needed. In our
experiments, we do not maintain such a distribution; if there is a tie, the agent in question wins with probability
0.5 (i.e., we assume it tied with only one opponent).

6Even when n < K, the state space can still be significantly reduced, since instead of n different possible
winner identities in the kth round, there are only min(n; k + 1). In the extreme case of n = 2, there is no
winner identity symmetry to exploit, since n = k + 1 even in the first round.
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ε-factor Approximation Define Ui(~π) = Eθi,hKi |~π[ui(θi, h
K
i )] to be bidder i’s expected utility

i when each agent plays its part in the vector of MDP assessment policies ~π. Following Def-
inition 2, the ε-factor measures bidder i’s loss in expected utility for not playing his part of ~π
when other bidders are playing their parts: εi(~π) = maxπ′i Ui(π

′
i, π−i) − Ui(πi, π−i). In fact,

since we are only interested in finding symmetric equilibria, where ~π = (π, . . . , π), we calculate
ε(π) = maxπ′ U(π′, ~π−i)− U(π, ~π−i).

The first term in this definition is the expected utility of the best response, π∗, to ~π−i. This quan-
tity typically cannot be computed exactly, so instead, we compute a near-best response π̂∗N =
Solve MDP(InducedN (π)), which is optimal with respect to InducedN (π) ≈ Induced(π),
and then measure the gain in expected utility of deviating from π to π̂∗N .

Further, we approximate expected utility through Monte Carlo simulation. Specificially, we compute
ÛL(~π) = 1

L

∑L
l=1 u(θl, hl) by sampling ~θ and simulating (πθ, . . . , πθ) L times, and then averaging

bidder i’s resulting utilities. Thus, we approximate ε(π) by ε̂(π) ≈ ÛL(π̂∗N , ~π−i)− ÛL(π, ~π−i).

The approximation error in ε̂(π) comes from both imprecision in InducedN (π), which depends on
the sample size N , and imprecision in the expected utility calculation, which depends on the sample
size L. The latter is O(

√
L) by the central limit theorem, and can be made arbitrarily small. (In

our experiments, we plot the confidence bounds of this error to make sure it is indeed small.) The
former arises because π̂∗N is not truly optimal with respect to Induced(π), and goes to zero as N
goes to infinity by standard reinforcement learning results [20]. In practice we make sure that N is
large enough so that this error is negligible.

5 Experimental Results

This section presents the results of running our iterative learning method on three auction mod-
els studied in the economics literature: Katzman [10], Weber [23], and Menezes and Monteiro
[14]. These models are all two-round, second-price, sequential auctions7, with continuous valua-
tion spaces; they differ only in their specific choice of valuations. The authors analytically derive
a symmetric pure strategy equilibrium for each model, which we attempt to re-discover using our
iterative method. After discretizing the valuation space, our method is sufficiently general to apply
immediately in all three settings.

Although these particular sequential auctions are all second price, our method applies to sequential
auctions with other rules as well. We picked this format because of the abundance of corresponding
theoretical results and the simplicity of exposition in two-round auctions. It is a dominant strategy to
bid truthfully in a one-shot second-price auction [22]; hence, when comparing policies in two-round
second-price auctions it suffices to compare first-round policies only.

Static Experiments We first run one iteration of our learning procedure to check whether the
derived equilibria are strict. In other words, we check whether Solve MDP(InducedN (πE)) =
πE, where πE is a (discretized) derived equilibrium strategy. For each of the three models, Figures
1(a)–1(c) compare first-round bidding functions of the former (blue) with the latter (green).

Our results indicate that the equilibria derived by Weber and Katzman are indeed strict, while that
by Menezes and Monteiro (MM) is not, since there exists a set of best-responses to the equilibrium
strategy, not a unique best-response. We confirm analytically that the set of bids output by our
learning procedure are best-responses to the theoretical equilibrium, with the upper bound being the
known theoretical equilibrium strategy and the lower bound being the black dotted line.8 To our
knowledge, this instability was previously unknown.

Dynamic Experiments Since MM’s theoretical equilibrium is not strict, we apply our iterative
learning procedure to search for more stable approximate equilibria. Our procedure converges within
a small number of iterations to an ε-BNE with a small ε factor, and the convergence is robust across
different initializations. We chose initial strategies π0 parametrized by p ∈ R+ that bid xp when
the marginal value of winning an additional good is x. By varying the exponent p, we initialize the
learning procedure with bidding strategies whose level of aggressiveness varies.

7Weber’s model can be extended to any number of rounds, but is unit, not multi-unit, demand.
8These analytical derivations are included in supplemental material.
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Figure 1: Comparison of first-round bidding functions of theoretical equilibrium strategies (green) and that of
the best response from one step of the iterative learning procedure initialized with those equilibrium strategies
(blue). (a) Weber. (b) Katzman. (c) MM.
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Figure 2: Convergence properties of the learning procedure in two-round MM model with 3 agents. (a),(b)
evaluates convergence through L1 distance of first-round bidding functions; (c) compares the learned best
response (blue) with different learning procedure initializations (green). (d) plots evolution of estimated ε-
factor for learning dynamics with one specific initialization; plots for other initializations look very similar.
The bracketed values in the legend give the 99% confidence bound for the ε-factor in the final iteration, which
is estimated using more sample points (N = L = 109) than previous iterations (N = L = 106).

Our iterative learning procedure is not guaranteed to converge. Nonetheless, in this experiment,
our procedure not only converges with different initialization parameters p (Figure 2(a)), but also
converges to the same solution regardless of initial conditions (Figure 2(b)). The distance measure
d(π, π′) between two strategies π, π′ in these figures is defined as the L1 distance of their respective
first-round bidding functions. Furthermore, the more economically meaningful measure of ε(π),
measured by ε̂(π), converges quickly to a negligible factor smaller than 1× 10−4, which is less than
0.01% of the expected bidder profit (Figure 2(d)).

All existing theoretical work on Bayesian sequential auctions with multi-unit demand is confined
to two-round cases due to the increased complexity of additional rounds, but our method removes
this constraint. We extend the two-round MM model into a three-round auction model,9 and apply
our learning procedure. It requires more iterations for our algorithm to converge in this set up, but it
again converges to a rather stable ε-BNE regardless of initial conditions. The final ε-factor is smaller
than 0.5% of expected bidder profit (Figure 3(d)). Although d(π, π′) no longer fully summarizes
strategy differences, it still strongly indicates that the learning procedure converges to very similar
strategies regardless of initial conditions (Figure 3(b)).

6 Related Work

On the theoretical side, Weber [23] derived equilibrium strategies for a basic model in which n
bidders compete in k first or second price auctions, but bidders are assumed to have unit demand.
Février [6] and Yao [25] studied a model where n bidders have multi-unit demand, but there are
only two auctions and a bidder’s per-good valuation is the same across the two goods. Liu [13]
and Paes Leme et al. [17] studied models of n bidders with multi-unit demand where bidders have

9This model is described in supplemental material.
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