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Here we give proof sketches of the theorems and propositions as well as some technical discussions.

Proof of Theorem 3.1. The proof is an application of the PAC-Bayes theorem (Theorem 2.1) and a
refinement of the proof of Theorem 2.2.

First observe that when considering distributions of homogeneous linear classifiers c,, in R?, we only
need to restrict ourselves in distributions of w on the (d — 1)-dimensional unit sphere S?~!. For any
probability distribution 7 of vectors in R%, let 7, denote the corresponding probability distribution
on S%~1 by projecting 7 from R? to 91,

Choose the prior distribution P of classifiers ¢y = sgn(< w, - >) corresponding to w ~ N, (0, 1),
i.e., the uniform distribution on S%~*. Let the posterior distribution Q (1, W) be defined as in Theo-
rem 3.1. It is obvious that Q(u, W) of ¢y corresponds to the distribution of w ~ N, (W, I). Thus to
finish the proof we only need to show
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Observe that for all o > 0, we have

KL (W, D[N, (0,1)) = KL (uw, D[|A;(0,0°1))
< KL (uw,D[|V(0,0°T)).
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The last inequality holds according to the chain rule of the KL divergence [1]. Taking 02 = 1 + &
completes the proof. O

It is worth pointing out that (1) is almost a tight upper bound. Thus the dimensionality d in-
volved is intrinsic. Note that gln( %) ~ dlnpu as p — oo. In fact we can show

KL(Np (pw, DN, (0,1)) ~ (d — 1) In pu.
To see this, let P = N,(0,1)), and Q = N, (uw,I). Since P is the uniform distribution on S¢~1,

we have KL(Q||P) = In 13?;//2) — h(Q), where h(Q) is the differential entropy of Q). So we only

need to show —h(Q) ~ (d — 1)Inp. Letv € S9! and let cosa =< v,w >. Let ¢(V) be the
density of (). We have
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Integration by parts yields a recursive formula

Lo(t) = tha_1(t) + (n — 2)I_o(2).

Also we have I (t) = ®(t), and I»(t) = e\;%

+ t®(t). Some calculation yields
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where f4(t) and g4(t) are polynomials of ¢ with (d — 2) and (d — 1) degree both with the leading
coefficient being 1. Thus

La(t) = fa(®) + (t)ga(?),

el exp(—i“2 S;’“2O‘)

q(v) = Wfd(u cosa) + P D (pcos a)ga(pcos a).

When p is sufficiently large, the first term in above formula is clearly negligible. For the second
term, we only need to consider a < ;~1/2, since otherwise the term is negligible. Thus

o Mz sin? a)

/S‘H (¥~ /scH a@)n (exp((27f)d;q)(u cos o) (ju cos a)d_1> s

2,2
i1 exp(—£55) oy ([ pta?
~ In = t+ a1 M ds.
(27'(') 2 Sd—1 q<pu—1/2 (271') 2 2

Some calculations show that
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‘We obtain the results.

Proof of Proposition 3.2. Obvious since gln (1 + "72) < "; for any d < oo and p > 0; and as

d— o0, g (14+8) - 12, O

Proof of Corollary 3.3. We will show that for every ¢ > 0 and every § > 2e=2n¢" with probability
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holds simultaneously for all homogeneous linear classifiers c,, with w € R? satisfying
<w,x>| td’?
Pp (‘y ’ < ) <e 3)
[[w 1] n?

where t = 1® 71(6). Setting € = § (d“%)l/2 yields the result (assuming n > 5).
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Set = ;13—"/22 in Theorem 3.1. Also let Q(u, W) be defined as in Theorem 3.1. By the simple fact
that

Kl(ers(Q)llern(Q)) = 2 (ers(Q) — ern(Q))”,

we obtain from Theorem 3.1 that with probability 1 — § for all w € R? with ||[w|| = 1
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erp(Qp, W)) < ers(Q(p, ) + \/ )



Letn = &7 (¢) and 2 = py <ﬁvxﬁ we have
erp(QUu W) = Epd(2)
= Pp(z<n) - Ep (®(z)]z<n) +

Pp(n<z<0) -Ep (®(2)ln<2<0)+

Pp(z > 0) - Ep (®(2)]z > 0)

(erp(cw) —€) - (1 —¢)

erp(cq) — 2e. (3)
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By the assumption of the theorem and the Chernoff bound, it is easy to see that with probability
1-— g, where § > 26*2”52,
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Similarly we can also show that

ers(Q(u, w)) < ers(cq) + 2e. (6)

Combining (4), (5) and (6) with the union bound, the theorem follows. O

Proof of Proposition 3.4. First it is easy to check that Py (y <r‘v ﬁ> < 9) (uy <|‘m> — 9),
where () is the abbreviation of Q(u, W) defined in Theorem 3.1. Also observe that for every
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Thus we have
erp(ey) = Epl [
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Proof of Proposition 3.5. Let € = erp ¢(()). We only need to show

€
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Note that 1 — ®(0) = ®(6). The LHS of (7) equals to ®(6) [1

€+ ®(0) —

>0. @)
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Finally, observe that if e + ®(#) < 1, then € < ®(#). The proposition follows. O

Proof of Lemma 3.6. Due to the symmetry of Gaussian distribution N (uw, I), simple analysis
shows that Py nr(uw,1) (ym < 9) is only a function of <‘T’|;(y”">, 6, and . We denote this

function as F'(u, <“"|;§’”"> 9).




A slight modification of the proof of Proposition 3.4 yields

erpo (Qu, W)

F(1,0,0) ®)

erp(cq) <

Let @, v to be two unit vectors satisfying < w,i >= 0 and v = v/1 — 620 — 6w. It’s not difficult to
show that for an arbitrary vector w:

<w,a>

<0
[[wll

<w,v><0=

Thus we have:

<w,a>
F(,LL,O, 9) = PWNN(;NV,I) <||VV| < 6)
= PWNN(,NV,[) (<w,v><0)
= B (—pb) = P (ub) 9)
Combining (8) and (9) finishes the proof. O
Proof of Proposition 3.7. Immediate. O
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