
A Additional Material: Proofs for Mixability in Statistical Learning

Here we collect proofs that were omitted from the main body of the paper due to lack of space.

A.1 Proof of Proposition 1

Proof. As e

�⌘`(Y,f(X))

e

�⌘`(Y,f⇤(X)) = e�⌘(`(Y,f(X))�`(Y,f

⇤
(X))) is convex in ⌘, linearity of expectation implies

that  (⌘) := E
h

e

�⌘`(Y,f(X))

e

�⌘`(Y,f⇤(X))

i
is also convex in ⌘. Observing that  (0) = 1, we have 0-stochastic

mixability. And by  (�) =  
�
(1 �

�

⌘

) · 0 +

�

⌘

· ⌘
�
 (1 �

�

⌘

) (0) + �

⌘

 (⌘)  1 we obtain
�-stochastic mixability.

A.2 Proof of Theorem 2

Proof. Let f⇤ be as in Definition 2. For � 2 [0, 1] and any distribution ⇡ on F, define the function

�
⇡

(�, x, y) = � ln

✓
(1� �)e�⌘`(y,f

⇤
(x))

+ �

Z
e�⌘`(y,f(x)) ⇡(df)

◆
, (10)

and let �
⇡

(�) = E[�
⇡

(�, X, Y )] be its expectation. Then for any x and y, �
⇡

(�, x, y) is convex in
�, because it is the composition of � ln with a linear function. By linearity of expectation, it follows
that �

⇡

(�) is also convex.

Stochastic mixability is related to �0
⇡

(0), the right-derivative of �
⇡

at � = 0, which we will now
compute. As �

⇡

(�, x, y) is convex, the slope s
⇡

(h, x, y) = �⇡(0+h,x,y)��⇡(0,x,y)

h

is nondecreasing
in h, and

s
⇡

(1/2, x, y) = 2 ln

e�⌘`(y,f

⇤
(x))

1

2

e�⌘`(y,f

⇤
(x))

+

1

2

R
e�⌘`(y,f(x)) ⇡(df)

 2 ln

e�⌘`(y,f

⇤
(x))

1

2

e�⌘`(y,f

⇤
(x))

= 2 ln 2.

Hence E[s
⇡

(1/2, X, Y )]  2 ln 2 < 1 and by the monotone convergence theorem [26]

�0
⇡

(0) = lim

h#0
E[s

⇡

(h,X, Y )] = E
⇥
lim

h#0
s
⇡

(h,X, Y )

⇤
= E

⇥ d
d�
�
⇡

(�, X, Y )|

�=0

⇤

= 1�E
⇥ Z e�⌘`(Y,f(X))

e�⌘`(Y,f

⇤
(X))

⇡(df)
⇤
= 1�

Z
E
⇥ e�⌘`(Y,f(X))

e�⌘`(Y,f

⇤
(X))

⇤
⇡(df).

Comparing to (3), we see that ⌘-stochastic mixability is equivalent to the property that �0
⇡

(0) � 0

for all ⇡. And as �
⇡

is convex, this in turn is equivalent to �
⇡

(�) being nondecreasing.

Suppose first that (`,F, P ⇤
) is ⌘-stochastically mixable. Then, for any ⇡, �

⇡

(�) is nondecreasing
and hence

⌘E[`(Y, f⇤
(X))] = �

⇡

(0)  �
⇡

(1) = E
⇥
� ln

Z
e�⌘`(Y,f(X)) ⇡(df)

⇤
,

from which (5) follows. Conversely, suppose that (5) holds for all ⇡. Then it holds in particular for
⇡ = (1� �)�

f

⇤
+ �⇡̄, where �

f

⇤ is a point-mass on f⇤, � 2 [0, 1] is arbitrary, and ⇡̄ is an arbitrary
distribution on F. Plugging this choice of ⇡ into (5), we find that

1

⌘
�
⇡̄

(0) = E[`(Y, f⇤
(X))]

 E
⇥
�

1

⌘
ln

✓
(1� �)e�⌘`(y,f

⇤
(x))

+ �

Z
e�⌘`(y,f(x)) ⇡̄(df)

◆⇤
=

1

⌘
�
⇡̄

(�)

for any � and ⇡̄. It follows that �
⇡̄

(�) is minimized at � = 0, and hence by its convexity that
it is nondecreasing. As we have established that ⌘-stochastic mixability is implied when �

⇡̄

(�) is
nondecreasing for all ⇡̄, the proof is complete.
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Figure 2: Illustration of the proof of Lemma 7.

A.3 Proof of Lemma 6

Proof. Let f 2 F be arbitrary, and for 0  � < 1 define

µ(�) = E
h
�

1

⌘

ln

⇣
(1� �)e�⌘`(Y,f

⇤
(X))

+ �e�⌘`(Y,f(X))

⌘i
.

Then ⌘-mixability of ` implies that for any x 2 X and � there exists a
�

(x) 2 A such that

`(y, a
�

(x))  �

1

⌘

ln

⇣
(1� �)e�⌘`(y,f

⇤
(x))

+ �e�⌘`(y,f(x))

⌘
8y 2 Y.

Hence for any �, we have µ(�) � E[`(Y, a
�

(X))] � E[`(Y, f⇤
(X))] = µ(0). This implies that

µ0
(0) � 0, where µ0

(�) is the right-derivative of µ(�), and the lemma follows by computing µ0
(0):

µ0
(�) = �1

⌘

E


e�⌘`(Y,f(X))

� e�⌘`(Y,f

⇤
(X))

(1� �)e�⌘`(Y,f

⇤
(X))

+ �e�⌘`(Y,f(X))

�

0  ⌘µ0
(0) = E


e�⌘`(Y,f

⇤
(X))

� e�⌘`(Y,f(X))

e�⌘`(Y,f

⇤
(X))

�
= 1�E


e�⌘`(Y,f(X))

e�⌘`(Y,f

⇤
(X))

�
.

A.4 Proof of Lemma 7

Proof. Suppose that ` is not ⌘-mixable. Then we will show that (`,Ffull) cannot be ⌘-stochastically
mixable either. Since ` is not ⌘-mixable, there must exist p

0

, p
1

2 � := e�⌘S` and � 2 (0, 1) such
that q := (1 � �)p

0

+ �p
1

is not in � (see Figure 2). For i = 1, 2, we have �

1

⌘

ln p
i

2 S
`

, so
there must exist predictions a

0

, a
1

2 A such that `
ai(y)  �

1

⌘

ln p
i

(y) for all y or, equivalently,
e�⌘`ai (y)

� p
i

(y). Let f
i

2 Ffull be such that f
i

(x) = a
i

for all x. We will construct a distribution
P ⇤ on X⇥ Y such that

E
P

⇤
[` (Y, f(X))] > E

P

⇤

h
�

1

⌘

ln q(Y )

i
(11)

for all f 2 Ffull. But, by the monotonicity of � ln, we have

E
P

⇤

h
�

1

⌘

ln q(Y )

i
� E

P

⇤

h
�

1

⌘

ln

⇣
(1� �)e�⌘`(Y,f0(X))

+ �e�⌘`(Y,f1(X))

⌘i
,

which contradicts ⌘-stochastic mixability of (`,Ffull, P
⇤
) by the characterization in Theorem 2 for

the distribution ⇡ that assigns point masses 1� � and � to f
0

and f
1

, respectively.

Our approach to establish (11) is illustrated by Figure 2. We define q
↵

= ↵q for ↵ 2 [0, 1], and let
� = sup{↵ | q

↵

2 �}. We will show that � 2 [0, 1) and that q
�

lies on the boundary of �. Then,
by assumption, � 1

⌘

ln q
�

is supportable, so that there exists a distribution P ⇤
Y

on Y such that

E
P

⇤
Y

h
�

1

⌘

ln q
�

(Y )

i
 E

P

⇤
Y
[t(Y )] for all t 2 S. (12)
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Now let P ⇤
X

be any distribution on X and define P ⇤
= P ⇤

X

⇥ P ⇤
Y

. Then, for any f 2 Ffull, (12)
implies that

E
P

⇤
[` (Y, f(X))] = E

P

⇤
X
E

P

⇤
Y
[` (Y, f(X)) | X]

� E
P

⇤
X
E

P

⇤
Y

h
�

1

⌘

ln q
�

(Y )

i

= E
P

⇤

h
�

1

⌘

ln q(Y )

i
�

1

⌘

ln�

> E
P

⇤

h
�

1

⌘

ln q(Y )

i
,

as required.

To show that � 2 [0, 1), we first observe that 0  q
0

(y) for all y, so that q
0

2 � and hence � � 0.
Furthermore, q

↵

2 � for all ↵ < � since for any 0 < ✏ < � � ↵, we have q
��✏

2 � which implies
that there exists a prediction a 2 A such that `

a

(y)  �

1

⌘

ln q
��✏

(y)  �

1

⌘

ln q
↵

(y) for all y.
Hence �

1

⌘

ln q
↵

2 S, and q
↵

2 �. But now

lim

↵"�
kq

�

� q
↵

k = lim

↵"�
(� � ↵)kqk  lim

↵"�
(� � ↵) = 0,

so the assumption that � is closed implies that q
�

2 �, and hence q
�

6= q, showing that � < 1.

Finally, to prove that q
�

lies on the boundary of �, consider a ball B
✏

= {r 2 � | kr � q
�

k < ✏}
of arbitrary radius ✏ 2 (0, 1 � �]. This ball contains the point q

�+✏/2

, which lies outside of � by
definition of �. Hence B

✏

is not contained in � for any ✏, and consequently q
�

must lie on the
boundary of �.

A.5 Proofs of Theorem 8 and Corollary 9

For ⌘ > 0, define

h
⌘

(f, f⇤
) =

1

⌘

⇣
1�E


e�⌘`(Y,f(X))

e�⌘`(Y,f

⇤
(X))

�⌘
.

The letter h comes from the special case of log-loss, X = {x} a singleton, and a correct model F
that includes the true distribution P ⇤

(Y |X = x), because in this case h
1/2

is the squared Hellinger
distance.

Also define the positive, continuous, increasing function �(a) = (ea � a � 1)/a2 for a 6= 0 and
�(0) = 1/2.

We need the following lemma, which is similar to Lemma 8.2 by Audibert [27] and to item (4) of
Proposition 1.2 by Zhang [21].
Lemma 10. Suppose |`(Y, f(X))� `(Y, f⇤

(X))|  V (a.s.) for V < 1. Then for any ⌘ > 0 there
exists c

⌘,f

2 [�(�⌘V ),�(⌘V )] such that

d(f, f⇤
) = h

⌘

(f, f⇤
) + c

⌘,f

⌘V (f, f⇤
).

Proof. Let Z = `(Y, f(X))� `(Y, f⇤
(X)) 2 [�V, V ]. We need to show

E[Z] =

1

⌘
(1�E[e�⌘Z

]) + c
⌘,f

⌘E[Z2

]. (13)

Suppose E[Z2

] = 0. Then Z = 0 (a.s.), and (13) is satisfied for any constant c
⌘,f

. Otherwise (13)
may be rewritten as

E
h

(⌘Z)

2

E[(⌘Z)

2

]

· �(�⌘Z)

i
= c

⌘,f

.

Recognising the left-hand side as the expectation of �(�⌘Z) under the distribution with density
(⌘Z)

2dP ⇤/E[(⌘Z)

2

], its value must lie in the interval [min

z

�(�⌘z),max

z

�(�⌘z)]. As � is in-
creasing, these extreme values are achieved at z = �V and z = V , from which the lemma fol-
lows.
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Proof of Theorem 8. Although h
⌘

is nonnegative when it equals the squared Hellinger distance,
this property does not hold in general. In fact, we observe that ⌘-stochastic mixability up to ✏ is
equivalent to

h
⌘

(f, f⇤
) � 0 for all f 2 F such that d(f, f⇤

) � ✏. (14)

(Only if) Suppose the margin condition (7) holds with constants  � 1 and c
0

> 0. Then Lemma 10
implies that

d(f, f⇤
)� h

⌘

(f, f⇤
)  �(⌘V )⌘V (f, f⇤

)  �(⌘V )⌘c
�1/

0

d(f, f⇤
)

1/. (15)

Now let ✏ > 0 be arbitrary. As the loss is bounded by V , we have d(f, f⇤
)  V . Hence for ✏ > V

(14) is trivially satisfied. So assume without loss of generality that ✏  V , and let ⌘ = C✏
�1


for some constant C 2 (0, V ��1


] to be determined later. Then ⌘  1, so that the fact that � is
increasing implies �(⌘V )  �(V ). Now for any f 2 F such that d(f, f⇤

) � ✏ we have

�(⌘V )⌘c
�1/

0

 �(V )c
�1/

0

C✏
�1


 �(V )c
�1/

0

Cd(f, f⇤
)

�1
 .

Combining this with (15), we find

d(f, f⇤
)� h

⌘

(f, f⇤
)  �(V )c

�1/

0

Cd(f, f⇤
)

h
⌘

(f, f⇤
) �

�
1� �(V )c

�1/

0

C
�
d(f, f⇤

).

Taking C = min

�
c

1/
0

�(V )

, 1

V

(�1)/

 
such that 1��(V )c

�1/

0

C � 0, and using d(f, f⇤
) � 0, we find

that h
⌘

(f, f⇤
) � 0 as required. This shows that the margin condition implies ⌘-stochastic mixability

up to ✏ for ⌘ = C✏(�1)/.

(If) Suppose the margin condition does not hold for . That is, for every c
0

> 0 there exists f
c0 2 F

such that
c
0

V (f
c0 , f

⇤
)

 > d(f
c0 , f

⇤
).

We will show that for every C > 0 there exists ✏ > 0 such that (14) with ⌘ = C✏(�1)/ is violated.
Let C > 0 be arbitrary and take ✏ = d(f

c0 , f
⇤
)  V for some c

0

> 0 to be determined later. Then
⌘  CV (�1)/ so that �(�⌘V ) � �(�CV 2�1/

) and hence Lemma 10 implies that

d(f
c0 , f

⇤
)� h

⌘

(f
c0 , f

⇤
) � �(�⌘V )⌘V (f

c0 , f
⇤
) > �(�⌘V )⌘c

1/

0

d(f
c0 , f

⇤
)

1/

✏� h
⌘

(f
c0 , f

⇤
) > �(�CV 2�1/

)⌘c
1/

0

✏1/ = �(�CV 2�1/

)c
1/

0

C✏

h
⌘

(f
c0 , f

⇤
) <

�
1� �(�CV 2�1/

)c
1/

0

C
�
✏.

Choosing c
0

�

�
�(�CV 2�1/

)C
�� gives 1 � �(�CV 2�1/

)c
1/

0

C  0 and so we find that
h
⌘

(f
c0 , f

⇤
) < 0 for f

c0 2 F such that d(f
c0 , f

⇤
) = ✏. This violates (14), as was to be shown.

Lemma 11. Suppose the margin condition (7) is satisfied for some constants c
0

> 0 and 1   <
1. Then the loss of f⇤ is almost surely unique. That is, if E[`(Y, g⇤(X))] = E[`(Y, f⇤

(X))] =

min

f2F E[`(Y, f(X))], then `(Y, g⇤(X)) = `(Y, f⇤
(X)) almost surely.

Proof. We have d(g⇤, f⇤
) = 0, and hence (7) implies that V (g⇤, f⇤

) = 0, from which the lemma
follows.

Proof of Corollary 9. If (`,F, P ⇤
) is stochastically mixable, then the margin condition (7) holds

with  = 1 by Theorem 8. Conversely, if (7) holds with  = 1 then Theorem 8 implies that
(`,

S
✏>0

F
✏

, P ⇤
) is stochastically mixable, which by Lemma 11 implies stochastic mixability of

(`,F, P ⇤
).
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