
1 Saliency for velocity tuned features

We start by reviewing how the saliency of a generic set of features Y(l) = (Y1(l), . . . , Yn(l)) can
be mapped to area V1 using the approach of [4].

1.1 Mapping saliency computation to area V1

When the features, Y(l), are of a bandpass nature, as is usual in biological vision, the feature
responses follow a generalized Gaussian distribution (GGD) of scale scale α and shape β [7],
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g(y) = log
PYk(l)|C(l)(y|1)
PYk(l)|C(l)(y|0)

=
|y|β0

αβ0

0

− |y|β1

αβ1

1

+ T, T = log
α0β1π1Γ(1/β0)

α1β0π0Γ(1/β1)
. (2)

The scale parameters α0 and α1 are estimated by the maximum a posteriori probability (MAP)
method, with conjugate (Gamma) priors, according to
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∀c ∈ {0, 1}. (3)

The shape parameters βc are quite consistent across image classes, and set to the value βc = 1,
which provides a good fit to natural images. Finally, replacing expectations by empirical averages,
the saliency expression of Section 3 in the submission can be written as

Sk(l) = EY (l){γ[PC(l)|Yk(l)(1|y)]} (4)

≈ 1

|Wl|
∑

j∈Wl

γ{σ(g[y(j)])}, Wl = W0
l ∪W1

l (5)

The computations of (2)-(5) can be mapped into a neural network that replicates the standard neuro-
physiological model of V1 neurons [3]. In particular, combining (2) and (3), it follows that g[y(j)]
computes a differential divisive normalization of the feature response y(j) by the responses of the
feature Yk in the neighborhoodsWc

l . Hence, σ(g[y(j)]) implements the computations of V1 simple
cells under the standard model: a sequence of linear filtering, rectification, divisive normalization,
and output saturation. (5) then pools the outputs of simple cells in Wl after passing them through the
non-linearity γ(x). These are the computations performed by V1 complex cells, under the standard
model. The mapping is illustrated in Figure 3 in the submission.

So far, we have discussed the saliency model in terms of generic features Y(l), and have shown that
the saliency computation can be mapped to area V1. We next show how the model can be extended
to compute saliency of velocity tuned spatiotemporal features.

1.2 Constructing a model for an MT neuron

Velocity tuned neurons are found in area MT of the visual pathway. It is known that these MT
neurons receive input from V1 complex cells [1]. Therefore, computational models for MT are
usually constructed by combining the outputs of V1 complex cell afferents [9, 8]. As simple and
complex cells in V1 are well modeled by the saliency network discussed above [4], a model for MT
can be constructed by substituting this network model in place of the standard model for V1 in the
approach of Simoncelli and Heeger [9].

In our model, as in [9], the linear filtering in the V1 simple cell stage is achieved using spatio-
temporal Gabor features Zk(l) that are sensitive to motion. The output of the model V1 complex cell
then computes bottom-up saliency for the corresponding spatio-temporal feature using (5), making
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it selective to the component of stimulus velocity orthogonal to the spatial orientation of the fea-
ture, but not truly direction selective. By combining the responses of a set of such features, a unit
responding to velocity in a specific direction can be constructed using the approach of Heeger [6].

Let SZj
(l) be the model output at the V1 stage for the jth spatio-temporal feature, Zj , using (5).

Then the output of a unit tuned to velocity v̄k, corresponding to feature Yk , is given by:

Sk(l) =
∑

j

wjk(v̄k)SZj
(l) (6)

where the weights wjk(v̄k) are computed using the approach of [6] (see Appendix 1.3). This is
equivalent to computing the saliency of a complex spatio-temporal feature Yk, designed to respond
to stimuli moving with a specific velocity v̄k, from a combination of simple spatio-temporal Gabor
features:

Yk(l) =
∑

j

wjk(v̄k)Zj(l) (7)

The expression for saliency of Yk in (6) ignores the effect of dependencies between the simple spatio-
temporal features, Zj , which has been shown to be a reasonable approximation when the features
are bandpass [11], as is the case for the Gabor features used in the construction of the model.

Finally, as in [9], the output of the unit is divisively normalized by the responses of other units:

Std
k (l) =

Sk(l)
∑

j Sj(l)
(8)

Each model unit corresponding to a feature Yk, tuned to velocity v̄k, can be thought of as being
equivalent to a neuron in MT. The computed model output is analogous to the neuron’s firing rate
and responds maximally when the input stimulus moves with v̄k, the velocity to which the feature is
tuned. This velocity is referred to as the preferred velocity of the model neuron. The interpretation,
given by (8), is that velocity selective tuning is a reflection of the neuron’s function as a detector of
salient motion configurations in a particular velocity channel. The resulting network is illustrated in
Figure 3 in the submission.

The model for MT proposed above is built from neurophysiologically plausible units, using the
same architecture as [9]. So arguments for biological plausibility of the V1 stage [4] and of the
architecture [9] extend to the proposed MT model. Further, by using a center-surround architecture
in the V1 stage, the model accounts for the surround antagonism observed in MT neurons [10, 2],
but not modeled by [9].

1.3 Computations of weights for the MT model

The weight wjk used in (6) to compute the response of the kth velocity tuned feature Yk, from the

jth spatio-temporal Gabor feature Zj can be evaluated using the Gabor energy approach of [6]. The
feature response corresponding to Zj is the output of the visual stimulus passed through a sine-phase
three dimensional Gabor filter gj(x, y, t) of the form:
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1√
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y
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t

)

(9)

where ωxj
, ωyj

is the spatial frequency, ωtj the temporal frequency, and the 3D Gaussian envelope
has standard deviations σx, σy, σt.

The Fourier transform of this Gabor filter is given by [5]:

Fgj
(ωx, ωy, ωt) =

i

2
{e−2π2σ2
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)2 − e−2π2σ2
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)2 +

e−2π2σ2

t (ωt−ωtj
)2 − e−2π2σ2

t (ωt+ωtj
)2}

The energy of feature responses to the filter of (9) can be computed if its power spectral density
(PSD) is known. As the filter is separable in its three dimensions, we first illustrate the computation
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Figure 1: Approximation of the PSD of a sine phase Gabor filter in 1D. The thick blue curve shows
the quantity in (14) for typical values of σx and ωxj

, and the dotted curve shows 104 times the
difference between the quantities in (14) and (13)

of PSD of a 1-D Gabor filter, g(x), from its Fourier response, Fg(ωx) [5]:

g(x) =
1√

2π
3

2σx

sin(2πωxj
x)e

− x2

2σ2
x (11)

Fg(ωx) =
i

2
{e−2π2σ2

x(ωx−ωxj
)2 − e−2π2σ2

x(ωx+ωxj
)2} (12)

The PSD of the filter is then
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where the third term,

D(ωx) = e
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x(ω
2
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)
, (15)

can be ignored because it is upper-bounded by e
−4π2σ2

xω
2

xj , a quantity that is much smaller than 1.
This is illustrated in Figure 1.

Similarly, the PSD of the 3D Gabor filter can be given by,

|Fgj
(ωx, ωy, ωt)|2 ≈ 1
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For a sinusoidal grating moving with a given velocity, v̄k = vkxêx + vky êy , its energy in the
frequency domain is contained in a plane defined by [12]:

vkxωx + vkyωy − ωt = 0 (18)

To construct a unit tuned to velocity v̄k we compute a weighted combination of the outputs of a set
of 3D Gabor filters following the approach of [9]. The weight assigned to each Gabor filter in the
set is in proportion to the energy contained in the intersection between the PSD of the filter and the
plane corresponding to v̄k. This can be computed as:
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where the second step follows due to the symmetry between the two lobes of the PSD. The integral
can be evaluated using the procedure outlined in [6].

In this work we use a total of 12 spatio-temporal filters, each with center frequency
(ωxj

, ωyj
, ωtj ), j = 0 . . . 11. We consider 12 neurons each tuned to motion with constant

speed in one of 12 different directions spread uniformly in (0◦, 360◦), corresponding to velocities
v̄k, k = 0 . . . 11.

wjk is then the weight assigned to the jth filter for computing motion in the kth direction.

2 Derivation of Equation (7) in the submission

From Section 3.1 in the main submission, we have

PC(l∗)|Fk
(1|1) = 2Sk(l

∗), (20)

Denote the state of Fk and l∗ at time t by F t
k and l∗t , respectively, and the sequence of target locations

till time t by l
∗
t = (l∗t , l

∗
t−τ . . . l

∗
0). Using Bayes rule, the posterior probability of feature Fk being

the most salient feature can be written as,

PF t
k
|C(l∗t )

(1|1) = PF t
k
|C(l∗t ),C(l∗

t−τ
)(1|1,1) ∝ PC(l∗t )|F

t
k
,C(l∗

t−τ
)(1|1,1)PF t

k
|C(l∗

t−τ
)(1|1) (21)

We do not assume an explicit motion model or motion extrapolation. However it is reasonable to
assume that the probability of finding the target is uniformly distributed in a small neighborhood
around l∗t−τ , and if the velocity of the target is not too high, l∗t is in this neighborhood. We can then
write,

PC(l∗t )|F
t
k
,C(l∗

t−τ
)(1|1) ∝ PC(l∗t )|F

t
k
(1|1) (22)

Using this in (21), we get,
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k
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t
k
(1|1)PF t

k
|C(l∗

t−τ
)(1|1) (23)

∝ PC(l∗t )|F
t
k
(1|1)

∑

i

PF t
k
,F

t−τ
i

|C(l∗
t−τ

)(1, 1|1) (24)

∝ PC(l∗t )|F
t
k
(1|1)

∑

i
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k
|F t−τ

i
,C(l∗
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t−τ
i

|C(l∗
t−τ

)(1|1) (25)

The probabilities PF t
k
|F t−τ

i
,C(l∗

t−τ
)(1|1,1) encode the likelihood of transition from state i to state

k. Since dominant features of the target tend to stay dominant for some time in the neighborhood
of the last known position of the target, we assume PF t

k
|F t−τ

i
,C(l∗

t−τ
)(1|1,1) = 1 if i = k and

null otherwise (this is the likelihood of transition only using the information from the previous time
step, it does not preclude new features from being selected if they become salient at t). Using this,
and (20), in (25) we get the recursion,

PF t
k
|C(l∗t )

(1|1) =
Sk(l

∗
t )PF

t−τ

k
|C(l∗

t−τ
)(1|1)

∑

j Sj(l∗t )PF
t−τ
j |C(l∗t−τ )

(1|1) . (26)
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