S.1 Proofs

S.1.1 Lemma 3.1

Proof. From the matrix inversion lemma we have

(16)
Vi,

a7

(18)
19)
(20)
2L

(22)

(23)

1 1 1. 1 -t 1 1 1. 1 -1
Alt=-1- @l (-1+-9,®7) @&, =-1-—-L(-I+-KI) &,
a ag x 6 a x a ag 6 a =

—1 —1
1 1 1 1 1 1 1.1
=-I1-—=&(-VVI+ -VAVT) &, =-T1- @IV (_I+-A
o a? I5; « o a? I6; e
1 27!
= —I1-®!Vdiag {a)\i + } vie,
Now suppose that A2 = ﬁl — ®ITVDVT®, for unknown diagonal matrix D. Squaring, we
obtain
1 2
~“1- —=®T’vDV’®, + ®IVDV'K,VDV'®,
o Va
1 2
=-1--——=®IvDV’'®, + ®IVDVIVAVIVDV'®,
a G a
1 2
=-1-—&IVvDV'®, + I VDADV'®,
a G a
1 2
=-—1-o'Vv (D - DAD) vie,
« Va
1 ) 2d;
=-I- &7V diag { o Aid?} vie, .
To solve the d; we equate
1 2d;
—— = = —\d;},
ki + G Va

which is quadratic in d;. Solving yields

1 1 1
dl‘ﬂi(ﬂim)'

Selecting the minus (vs the plus) will produce a pd matrix. We obtain

It follows
P, A2 = %% + K,V diag {Al (\/ﬁ - \/1&> } Vi,
= %@x + VAVTYV diag {Al (\/aiﬁ — \/1&> } vVie,
= %VVT{% +Vdiag {a+ IW - \/1&} V',

1 . 1 1
=V (Jpreding{ - o) VI,

1
=Vdiag{ —— »V'®, = B®,
g{va+5>\i}
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S.1.2 Lemma 3.2

Proof. Observe:

Q’Q = (1- VO + OGO (1— UO” + OGUT) 31)
00T+ UG- 00T+ 007 UG+ UG U7 UGTOT+007  (32)

=1 (33)

O

S.1.3 Theorem 3.3

We begin with preliminary definitions. For V € St(N, r), we define
R(V)2{Y:Y eSt(N,r)and 3 A € O(r) such that Y = VA}
N(V)2{Y:YeS(N,N—7)and VIY =0, (x_n} -
It follows immediately that Y € R(V) & V e R(Y)and Y € N(V) & V € N(Y).
Given Q € O(N), we would like to know if Q can be expressed as Iy — V (I, — G)VT for some
orthogonal G. If so, we can write Q = Iy — V(I, — G)VT = Iy — (VA)(I, - ATGA)(VA)T,
A orthogonal, implying that Q can be decomposed via any member of R(V). When this decompo-
sition is possible, we say Q is supported by R(V).
Lemma S.1.1. Given Q € O(N) and V € St(N,r). Q is supported by R(V) if and only if for any
Vi, eN(V)wehave VIQV =1Ix_,.

Proof. (=) With Q supported by R(V), there exists G € O(r) such that Q = Iy — V(L. —G) V7.
It follows that ViQVL =VIvV, - VIV, -G)VIV, =Iy_,-0=1Iy_,.
(<) The matrix V = (V | V) is an element of O(N). We may therefore write

_voravor v (VY or _ o (VIQV VIQV,\ o1
Q=VViQVV’ =V <V£> Q(V|V)VI =V (V{QV V{QVJ VT (34
v <$8¥, VT?VL) VT 35)
1

Whenever an orthogonal matrix contains an j-th element of +1, the remaining ¢-th row and j-th
column elements are 0. With VI QV orthogonal, the identity block in the bottom-right corner
implies that VI'QV | = 0 and VI QV = 0. The result is a block diagonal orthogonal matrix; the
first block is VZ'QV and the second is identity. It follows that G = VT'QV € O(r). We have

a=v (V' vr—ovivo (V'Y 9) (V) (36)

=v, VI 4 vviqQvvT (37)

= (V. VI +vVvh) —(vvT + vGVvT) (38)

=Iy -V -G)VT (39)

The above simplification follows from Iy = VVT = VVT 4+ v, VT, O

Corollary S.1.2. I is supported by R(V).

We can now proceed to the optimization problem. The objective of interest, f : O(N)™ — R, is
f(Qu,-,Qm) :ZHZiQi*ZijH?~ (40)
i<j
The next two lemmas are independent of f, but necessary for the final theorem.
Lemma S.1.3. For Y., we have L 3" | 'Y, = argming Y1, |[Y; — C||2.
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Proof. Taking the derivative with respect to C and setting equal to zero, we have:

m 1 m
0=2 CcC-Y; C=— Y; 41
; ) = — ; 41
O
Lemma S.14. For C = L3, Y, we have 3/L Y = Y;[2 = 350 1Y = Y[l =
my Y - Cf%
Proof. The first equality is due to
m m m m
2 IV =Y =D IV =Y R+ DY = Y7 +Z Y =Yl . 42
i<j i<j i>]
The second equality is due to
S NYi =Y, = | Do te(Y]Y:) = 2tx(Y]Y,) + tr(Y]Y;) (43)
=1 j=1 i=1 \j=1
Z mtr(YTY;) — 2mtr(YI'C) + Ztr (44)
1=1
- (m tr(Y2Y;) ) — (2m*tr(CTC)) + mZtr(YJTYj) (45)
i=1 j=1
= <2m tr(Y! YZ-)) — (2m*tr(CTC)) (46)
=1
and
m> |IY; = ClF =m>_ tr(Y]Y;) = 2tx(Y]C) + tr(C"C) (47)
=1 =1
= (mZtr(YiT Yi)> — (2m?tr(CTC)) + (m*tr(CTC))  (48)
=1
m
= <m2tr(Yf Yi)) — (m*tr(C*C)) (49)
=1

O

Lemma S.1.5. Let Ry.,, € O(N) and let A C {1,2,...,m}. The following algorithm, which
updates R; to R, results in f(Ri.m) > f(RL.,):

1. C«+ % ZZZI Z,R;
2. foreachj € {1,2,...,m}\A: R} < R;

3. foreachj € A: R + argmingco(n) [1Z;Q — C|?
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Proof. Let C' = LY | Z,R/. We have

fRym) =m Z |Z;R; — C|)? from Lemma S.1.4 (50)
i=1
>mY_|ZR; - C|} from the algorithm (51)
i=1
>mY» |ZR; - C'|} from Lemma S.1.3 (52)
i=1
= f(RL.) from Lemma S.1.4 . (53)
O

Lemma S.1.6. f is bounded by below.

Proof. f is the sum of nonnegative entries, so it is lower bounded by 0. O

Lemma S.1.7. For R € O(N), f(Q1,Qs, ..., Qm) = f(QiR, QsR, ..., QR).
Proof. The Frobenius norm is unitariliy invariant: [|Z;Q;R — Z;Q,R||? = [|Z;Q; — Z;Q,|?. O

In what follows, we use f(Q1.m) = % Zznj 1Z:Q; — Z;Q;||? (Lemma S.1.4). With respect to Q,
the unconstrained derivative is

of “
=7 ) Z;Q; (54)
aq. ~ L2 ZQ
Thus, a critical point (Sq, . .., S,,) must satisfy [5]:
SYZ{> 7;S;esv (55)
=1

for each k, where S*V denotes the set of N x N symmetric matrices.
Lemma S.1.8. For R € O(N), if (S1,...,Sy) is a critical point of f, then so is (S1R,, ..., S, R).

Proof. For each k we have Fy, = STZ] Y | Z,;S; symmetric. If Fj is symmetric then so is
R'F:R = (S,R)TZ] > | Z;,(S;R). O

Letr = mt and let W = [ZT ZT ... ZT'|T € R"™¥ have SVD UXVT, where U € O(r)
1

and V € St(N,r). In the notation of kernel hyperalignment, we have Z; = <I’7;A; 2 and &) =
(@] @] - @} ]".
LemmaS.19. Z, =Z,VVT.

Proof. Let E; = [O4xs -+ Oxs It Opxey -+ 04x¢)T. We have Z; = EI'W = EI'USZVT and

i—1 m—1

Z,VVT = (ETW)VV? = ETUSVTVVT = ETUSVT. m

Theorem S.1.10. Any global minimizer of f can be mapped to another global minimizer whose
entries are supported by R(V).

Proof. Let (gl, ...,S;) be a global minimizer of f. Because f is differentiable and bounded by

below, (S1,...,S,,) is a critical point. We form S, = éiSF{. From Lemmas S.1.7 and S.1.8 S;.,,
is also a global minimizer and a critical point. With (S1,Ss,...,S;,) = (I,S2,...,S,,), we have

STz 7,8; =S[Z{MesV (56)

i=1
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where M = Z:’;l Z;S;. Every symmetric matrix is diagonalizable [11] so there exists unitary Py,
and diagonal Dy, such that

sTzIm =wm"z,S, = P.D,P} . (57)
Using Lemma S.1.9 we obtain
MTZ, VVTS, = P,D,PT (58)
Mz, vVl =P, D, PIST (59)
SiM”’z, vv? =S, P,D,P!ST (60)
SiMTZ, VVT = (S, P;)Dy(SiP:)" . (61)

Let V., € N (V). With S;M7Z,VVT symmetric and (S;MZZ,VVT)V = 0, it follows that
SiPr =[VAy | V] for some Ay € O(r) and (N — r) of the eigenvalues are zero. We may
therefore use

Si=[VAL | VLIP . Pp=[S{VA;[S{V.] and D= (?,k 8) . (62)
where Dy, is r x r diagonal.
‘We now wish to show that MS%V | = O for each k. We first note that
> M7z;8; => M'Z;VV'S; =) P,D,P] (63)
j=1 j=1 j=1
=M"> 7;8;, =M"M=> S!'z2]'z;S; . (64)
j=1 i
We have
m
visamimsTv, =vTs, ZP D PT) STV, (65)
m ATVT
= VI(VAL [V P[ | ) P;D;P] | Py ( VT ) Vi (66)
j=1
m f) O
—om [ Xee) (B g)@ren) () ©7)
j=1

=(0|1) jZi({‘; 8) (‘I)) (68)

= (0|1 (0 8) (?) (69)

=0. (70
It follows that
IMSIV |2 =tr(VIS,MTMST V) =tr(0) =0 (71)

and so necessarily we have MSST V| = 0 (a norm separates points). With S; = I we also have
MV, =0.
The minimizer S;.,, is fixed and consequently so is M. Let C = %M be the centroid of the

mappings. Corollary S.1.2 tells us that S; = I is supported by R(V) so we consider S,.,,,. For each
k = 2,3,...,m we generate a new Sy, by solving arg mingc () [ Z+Q — C||7. Lemma S.1.5
guarantees that this new point will not increase the objective and so it will also be a global minimizer.
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Starting with k& = 2 we seek an orthogonal Q to minimize ||Z2Q — C||? = consT —2tr(QTZ% C)
or maximize tr(QTZ2M). The problem at hand is the classical orthogonal Procrustes problem. A
solution is found with full left and right singular matrices of Y = ZIM. Now, V1Y = 0 because
ZQT = VVTZ§ from Lemma S.1.9. Furthermore, YV | = 0 because MV = 0. Thus, the
SVD of Y admits respective left and right singular matrices [VB | V| ] and [VB’ | V | ] for some
orthogonal B and B’. It follows that Q. = [VB | V][VB’ | V|7 is a valid minimizer with

which we update So. This process is then repeated for £ = 3, ..., m. Finally, we note that
VIIVB|VL][VB' |V 'V =[o|L[0 |1 =T, (72)
so from Lemma S.1.1, the updates produce a global minimizer supported by R(V) [

S.2  Derivation of (11)
R/ ®/w = — Z ( —®TK;'®, + 87K, *GTK, ? &, 87 B,
‘ | jEA
B,;®;[I- ®TK; '®, + QOTKO%GA‘ijOé':I)O]) (73)

_1 _1
= CONST + W > (@OTKO *GTK, 2 ®,®!B,B;®;
jeEA

_1 . _1
I-®(K,'®,+®[K,>G,K, 2%]), (74)

and so

tr(RY ®7 ®) + CONST

~tr |A| 3" GTK, *KyBB,®; (I ~TK '@ + @%Kg%Gng%tbo) PTK,*
jeEA

_tr<GiTK55KOZ [ S OB, (®,9] - ®,8]K,  Bo®]

ey
_1 4 1 1
+ ‘I’j(I)OTKo 2GjK0 zéoq’g)}Ko 2)
_1 A _1 _1
<GTK “K,B [,4| > B, (Ko — KoK 'K + KoK, * G, K, ZKO)}KO >
JjeA
—tr [ GTK; *Ko;B; ZB KoK, ? G, (75)
| | je.A
~ 1 ~ A
= tr G?BlT —_— Z BjGj (76)
Al &=
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S.3 The Orthogonal Procrustes Problem for n > 2¢

We can use the approach taken in formulating the kernel hyperalignment algorithm for solving
arg ming e o, [ XR — Y||2. Here, X,Y € R™™" and n > 2t. We form plane support via

[XT | YT]T c R2t><".

Let [XT | YT]T have SVD UXV7T with & r x r diagonal, where r is the rank of the matrix.
Impose R = I, — V(I, — G)V7 for some G € O(n). It follows that we wish to maximize
tr(VIGTVXTY) = tr(GTVTXTYYV). Thus, we take the full SVD of VIXTYV = UXVT
and set G, = UVT,

In total, this solution requires 2 SVDs: one of a 2¢ xn matrix and one of an r X matrix. Respectively,

these SVDs cost O(4t?n) and O(r3) operations. By construction r < 2t, so the total SVD cost in
the worst case is O(4t%n + 8t*), which is linear in n.

As a final note, the storage requirement for the dense R is n? entries. However, given the imposed
decomposition, the storage reduces to nr for V and r2 for G, yielding a total of nr+r2. Necessarily,
there is always a storage benefit because nr + 72 > n? = n/r < (14+/5)/2 ~ 1.618 (Golden
Ratio). With r < 2t < n, we have n/r > 2 > (1+\/5)/2.

S.4 Kernels used for experiments

Recall that n is the number of voxels.

e Linear
<X17X2> (77)
e Quadratic
n 2
(555 + (xax2)) (78)
e Gaussian
[x1 — %213
eXp{ 92455 79
e Sigmoid
7
tanh ( —(x1, X2) (80)
n
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