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Abstract

Maximum entropy (MaxEnt) modeling is a popular choice for sequence analysis
in applications such as natural language processing, where the sequences are em-
bedded in discrete, tractably-sized spaces. We consider the problem of applying
MaxEnt to distributions over paths in continuous spaces of high dimensionality—
a problem for which inference is generally intractable. Our main contribution
is to show that this intractability can be avoided as long as the constrained fea-
tures possess a certain kind of low dimensional structure. In this case, we show
that the associated partition function is symmetric and that this symmetry can be
exploited to compute the partition function efficiently in a compressed form. Em-
pirical results are given showing an application of our method to learning models
of high-dimensional human motion capture data.

1 Introduction

This work aims to generate useful probabilistic models of high dimensional trajectories in continu-
ous spaces. This is illustrated in Fig.[I] which demonstrates the application of our proposed method
to the problem of building generative models of high dimensional human motion capture data. Using
this method, we may efficiently learn models and perform inferences including but not limited to the
following: (1) Given any single pose, what is the probability that a certain type of motion ever visits
this pose? (2) Given any pose, what is the distribution over future positions of the actor’s hands? (3)
Given any initial sequence of poses, what are the odds that this sequence corresponds to one action
type versus another? (4) What is the most likely sequence of poses interpolating any two states?

The maximum entropy learning (MaxEnt) approach advocated here has the distinct advantage of
being able to efficiently answer all of the aforementioned global inferences in a unified framework
while also allowing the use of global features of the state and observations. In this sense, it is analo-
gous to another MaxEnt learning method: the Conditional Random Field (CRF), which is typically
applied to modeling discrete sequences. We show how MaxEnt modeling may be efficiently ap-
plied to paths in continuous state spaces of high dimensionality. This is achieved without having
to resort to expensive, approximate inference methods based on MCMC, and without having to as-
sume that the sequences themselves lie in or near a low dimensional submanifold, as in standard
dimensionality-reduction-based methods. The key to our method is to make a natural assumption
about the complexity of the features, rather than the paths, that results in simplifying symmetries.

This idea is illustrated in Fig.[2] Here we suppose that we are tasked with the problem of comparing
two sets of paths: the first, sampled from an empirical distribution; and the second, sampled from a
learned distribution intended to model the distribution underlying the empirical samples. Suppose
first that we are to determine whether the learned distribution correctly samples the desired distribu-
tion. We claim that a natural approach to this problem is to visualize both sets of paths by projecting
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Figure 1: Visualizations of predictions of future locations of hands for an individually held-out
motion capture frame, conditioned on classes indicated by labels above figures, and corresponding
class membership probabilities. See supplementary material for video demonstration.
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Figure 2: Illustration of the constraint that paths sampled from the learned distribution should (in
expectation) visit certain regions of space exactly as often as they are visited by paths sampled from
the true distribution, after projection of both onto a low dimensional subspace. The shading of each
planar cell is proportional to the expected number of times that cell is visited by a path.

them onto a common low dimensional basis. If these projections appear similar, then we might con-
clude that the learned model is valid. If they do not appear similar, we might try to adjust the learned
distribution, and compare projections again, iterating until the projections appear similar enough to
convince us that the learned model is valid.

We then might consider automating this procedure by choosing numerical features of the projected
paths and comparing these features in order to determine whether the projected paths appear similar.
Our approach may be thought of as a way of formalizing this procedure. The MaxEnt method
described here iteratively samples paths, projects them onto a low dimensional subspace, computes
features of these projected paths, and adjusts the distribution so as to ensure that, in expectation,
these features match the desired features.

A key contribution of this work is to show that that employing low dimensional features of this sort
enables tractable inference and learning algorithms, even in high dimensional spaces. Maximum
entropy learning requires repeatedly calculating feature statistics for different distributions, which
generally requires computing average feature values over all paths sampled from the distributions.
Though this is straightforward to accomplish via dynamic programming in low dimensional spaces,
it may not be obvious that the same can be accomplished in high-dimensional spaces. We will show
how this is possible by exploiting symmetries that result from this assumption.

The organization of this paper is as follows. We first review some preliminary material. We then
continue with a detailed exposition of our method, followed by experimental results. Finally, we
describe the relation of our method to existing methods and discuss conclusions.
























