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Abstract

Sign-random-projection locality-sensitive hashing (SRP-LSH) is a probabilistic
dimension reduction method which provides an unbiased estimate of angular sim-
ilarity, yet suffers from the large variance of its estimation. In this work, we pro-
pose the Super-Bit locality-sensitive hashing (SBLSH). It is easy to implement,
which orthogonalizes the random projection vectors in batches, and it is theoreti-
cally guaranteed that SBLSH also provides an unbiased estimate of angular sim-
ilarity, yet with a smaller variance when the angle to estimate is within (0, ⇡/2].
The extensive experiments on real data well validate that given the same length
of binary code, SBLSH may achieve significant mean squared error reduction in
estimating pairwise angular similarity. Moreover, SBLSH shows the superiority
over SRP-LSH in approximate nearest neighbor (ANN) retrieval experiments.

1 Introduction

Locality-sensitive hashing (LSH) method aims to hash similar data samples to the same hash code
with high probability [7, 9]. There exist various kinds of LSH for approximating different distances
or similarities, e.g., bit-sampling LSH [9, 7] for Hamming distance and `1-distance, min-hash [2, 5]
for Jaccard coefficient. Among them are some binary LSH schemes, which generate binary codes.
Binary LSH approximates a certain distance or similarity of two data samples by computing the
Hamming distance between the corresponding compact binary codes. Since computing Hamming
distance involves mainly bitwise operations, it is much faster than directly computing other dis-
tances, e.g. Euclidean, cosine, which require many arithmetic operations. On the other hand, the
storage is substantially reduced due to the use of compact binary codes. In large-scale applications
[22, 11, 5, 17], e.g. near-duplicate image detection, object and scene recognition, etc., we are often
confronted with the intensive computing of distances or similarities between samples, then binary
LSH may act as a scalable solution.

1.1 Locality-Sensitive Hashing for Angular Similarity

For many data representations, the natural pairwise similarity is only related with the angle between
the data, e.g., the normalized bag-of-words representation for documents, images, and videos, and
the normalized histogram-based local features like SIFT [20]. In these cases, angular similarity
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can serve as a similarity measurement, which is defined as sim(a, b) = 1� cos

�1
(

ha,bi
kakkbk )/⇡. Here

ha, bi denotes the inner product of a and b, and k · k denotes the `2-norm of a vector.

One popular LSH for approximating angular similarity is the sign-random-projection LSH (SRP-
LSH) [3], which provides an unbiased estimate of angular similarity and is a binary LSH method.
Formally, in a d-dimensional data space, let v denote a random vector sampled from the normal
distribution N (0, Id), and x denote a data sample, then an SRP-LSH function is defined as hv(x) =

sgn(vT x), where the sign function sgn(·) is defined as

sgn(z) =

⇢
1, z � 0

0, z < 0

Given two data samples a, b, let ✓a,b = cos

�1
(

ha,bi
kakkbk ), then it can be proven that [8]

Pr(hv(a) 6= hv(b)) =

✓a,b

⇡

This property well explains the essence of locality-sensitive, and also reveals the relation between
Hamming distance and angular similarity.

By independently sampling K d-dimensional vectors v1, ..., vK from the normal distribution
N (0, Id), we may define a function h(x) = (hv1(x), hv2(x), ..., hvK (x)), which consists of K
SRP-LSH functions and thus produces K-bit codes. Then it is easy to prove that

E[dHamming(h(a), h(b))] =

K✓a,b

⇡ = C✓a,b

That is, the expectation of the Hamming distance between the binary hash codes of two given data
samples a and b is an unbiased estimate of their angle ✓a,b, up to a constant scale factor C = K/⇡.
Thus SRP-LSH provides an unbiased estimate of angular similarity.

Since dHamming(h(a), h(b)) follows a binomial distribution, i.e. dHamming(h(a), h(b)) ⇠
B(K, ✓a,b

⇡ ), its variance is K✓a,b

⇡ (1 � ✓a,b

⇡ ). This implies that the variance of
dHamming(h(a), h(b))/K, i.e. V ar[dHamming(h(a), h(b))/K], satisfies

V ar[dHamming(h(a), h(b))/K] =

✓a,b

K⇡ (1� ✓a,b

⇡ )

Though being widely used, SRP-LSH suffers from the large variance of its estimation, which leads
to large estimation error. Generally we need a substantially long code to accurately approximate
the angular similarity [24, 12, 23]. Since any two of the random vectors may be close to being
linearly dependent, the resulting binary code may be less informative as it seems, and even contains
many redundant bits. An intuitive idea would be to orthogonalize the random vectors. However,
once being orthogonalized, the random vectors can no longer be viewed as independently sampled.
Moreover, it remains unclear whether the resulting Hamming distance is still an unbiased estimate
of the angle ✓a,b multiplied by a constant, and what its variance will be. Later we will give answers
with theoretical justifications to these two questions.

In the next section, based on the above intuitive idea, we propose the so-called Super-Bit locality-
sensitive hashing (SBLSH) method. We provide theoretical guarantees that after orthogonalizing the
random projection vectors in batches, we still get an unbiased estimate of angular similarity, yet with
a smaller variance when ✓a,b 2 (0, ⇡/2], and thus the resulting binary code is more informative. Ex-
periments on real data show the effectiveness of SBLSH, which with the same length of binary code
may achieve as much as 30% mean squared error (MSE) reduction compared with the SRP-LSH in
estimating angular similarity on real data. Moreover, SBLSH performs best among several widely
used data-independent LSH methods in approximate nearest neighbor (ANN) retrieval experiments.

2 Super-Bit Locality-Sensitive Hashing

The proposed SBLSH is founded on SRP-LSH. When the code length K satisfies 1 < K  d,
where d is the dimension of data space, we can orthogonalize N (1  N  min(K, d) = K) of the
random vectors sampled from the normal distribution N (0, Id). The orthogonalization procedure
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is the Gram-Schmidt process, which projects the current vector orthogonally onto the orthogonal
complement of the subspace spanned by the previous vectors. After orthogonalization, these N
random vectors can no longer be viewed as independently sampled, thus we group their resulting
bits together as an N -Super-Bit. We call N the Super-Bit depth.

However, when the code length K > d, it is impossible to orthogonalize all K vectors. Assume
that K = N ⇥ L without loss of generality, and 1  N  d, then we can perform the Gram-
Schmidt process to orthogonalize them in L batches. Formally, K random vectors {v1, v2..., vK}
are independently sampled from the normal distribution N (0, Id), and then divided into L batches
with N vectors each. By performing the Gram-Schmidt process to these L batches of N vectors
respectively, we get K = N ⇥ L projection vectors {w1, w2..., wK}. This results in K SBLSH
functions (hw1 , hw2 ..., hwK ), where hwi(x) = sgn(wT

i x). These K functions produce L N -Super-
Bits and altogether produce binary codes of length K. Figure 1 shows an example of generating
12 SBLSH projection vectors. Algorithm 1 lists the algorithm for generating SBLSH projection
vectors. Note that when the Super-Bit depth N = 1, SBLSH becomes SRP-LSH. In other words,
SRP-LSH is a special case of SBLSH. The algorithm can be easily extended to the case when the
code length K is not a multiple of the Super-Bit depth N . In fact one can even use variable Super-Bit
depth Ni as long as 1  Ni  d. With the same code length, SBLSH has the same running time
O(Kd) as SRP-LSH in on-line processing, i.e. generating binary codes when applying to data.
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Figure 1: An illustration of 12 SBLSH projection vectors {wi} generated by orthogonalizing {vi}
in 4 batches.

Algorithm 1 Generating Super-Bit Locality-Sensitive Hashing Projection Vectors
Input: Data space dimension d, Super-Bit depth 1  N  d, number of Super-Bit L � 1,
resulting code length K = N ⇥ L.

Generate a random matrix H with each element sampled independently from the normal distribu-
tion N (0, 1), with each column normalized to unit length. Denote H = [v1, v2, ..., vK ].
for i = 0 to L� 1 do

for j = 1 to N do
wiN+j = viN+j .
for k = 1 to j � 1 do

wiN+j = wiN+j � wiN+kwT
iN+kviN+j .

end for
wiN+j = wiN+j/kwiN+jk.

end for
end for
Output: ˜H = [w1, w2, ..., wK ].

2.1 Unbiased Estimate

In this subsection we prove that SBLSH provides an unbiased estimate of ✓a,b of a, b 2 Rd.
Lemma 1. ([8], Lemma 3.2) Let Sd�1 denote the unit sphere in Rd. Given a random vector v
uniformly sampled from Sd�1, we have Pr[hv(a) 6= hv(b)] = ✓a,b/⇡.
Lemma 2. If v 2 Rd follows an isotropic distribution, then v̄ = v/kvk is uniformly distributed on
Sd�1.

This lemma can be proven by the definition of isotropic distribution, and we omit the details here.
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Lemma 3. Given k vectors v1, ..., vk 2 Rd, which are sampled i.i.d. from the normal distribution
N (0, Id), and span a subspace Sk, let PSk denote the orthogonal projection onto Sk, then PSk is a
random matrix uniformly distributed on the Grassmann manifold Gk,d�k.

This lemma can be proven by applying the Theorem 2.2.1(iii), Theorem 2.2.2(iii) in [4].
Lemma 4. If P is a random matrix uniformly distributed on the Grassmann manifold Gk,d�k,
1  k  d, and v ⇠ N (0, Id) is independent of P , then the random vector ṽ = Pv follows an
isotropic distribution.

From the uniformity of P on the Grassmann manifold and the property of the normal distribution
N (0, Id), we can get this result directly. We give a sketch of proof below.

Proof. We can write P = UUT , where the columns of U = [u1, u2, ..., uk] constitute an orthonor-
mal basis of a random k-dimensional subspace. Since the standard normal distribution is 2-stable
[6], v̂ = UT v = [v̂1, v̂2, ..., v̂k]

T is a N (0, Ik)-distributed vector, where each v̂i ⇠ N (0, 1), and it
is easy to verify that v̂ is independent of U . Therefore ṽ = Pv = Uv̂ = ⌃

k
i=1v̂iui. Since ui, ..., uk

can be any orthonormal basis of any k-dimensional subspace with equal probability density, and
{v̂1, v̂2, ..., v̂k} are i.i.d. N (0, 1) random variables, ṽ follows an isotropic distribution.

Theorem 1. Given N i.i.d. random vectors v1, v2, ..., vN 2 Rd sampled from the normal distri-
bution N (0, Id), where 1  N  d, perform the Gram-Schmidt process on them and produce N
orthogonalized vectors w1, w2, . . . , wN , then for any two data vectors a, b 2 Rd, by defining N
indicator random variables X1, X2, ...,XN as

Xi =

⇢
1, hwi(a) 6= hwi(b)
0, hwi(a) = hwi(b)

we have E[Xi] = ✓a,b/⇡, for any 1  i  N .

Proof. Denote Si�1 the subspace spanned by {w1, ..., wi�1}, and the orthogonal projection onto its
orthogonal complement as P?

Si�1
. Then wi = P?

Si�1
vi. Denote w̄ = wi/kwik.

For any 1  i  N , E[Xi] = Pr[Xi = 1] = Pr[hwi(a) 6= hwi(b)] = Pr[hw̄(a) 6= hw̄(b)]. For
i = 1, by Lemma 2 and Lemma 1, we have Pr[X1 = 1] = ✓a,b/⇡.

For any 1 < i  N , consider the distribution of wi. By lemma 3, PSi�1 is a random matrix
uniformly distributed on the Grassmann manifold Gi�1,d�i+1, thus P?

Si�1
= I�PSi�1 is uniformly

distributed on Gd�i+1,i�1. Since vi ⇠ N (0, Id) is independent of v1, v2, ..., vi�1, vi is independent
of P?

Si�1
. By Lemma 4, we have that wi = P?

Si�1
vi follows an isotropic distribution. By Lemma

2, w̄ = wi/kwik is uniformly distributed on the unit sphere in Rd. By Lemma 1, Pr[hw̄(a) 6=
hw̄(b)] = ✓a,b/⇡.

Corollary 1. For any Super-Bit depth N , 1  N  d, assuming that the code length K = N ⇥ L,
the Hamming distance dHamming(h(a), h(b)) is an unbiased estimate of ✓a,b, for any two data
vectors a and b 2 Rd, up to a constant scale factor C = K/⇡.

Proof. Apply Theorem 1 and we get E[dHamming(h(a), h(b))] = L ⇥ E[⌃

N
i=1Xi] = L ⇥

⌃

N
i=1E[Xi] = L⇥ ⌃

N
i=1✓a,b/⇡ =

K✓a,b

⇡ = C✓a,b.

2.2 Variance

In this subsection we prove that when the angle ✓a,b 2 (0, ⇡/2], the variance of SBLSH is strictly
smaller than that of SRP-LSH.
Lemma 5. For the random variables {Xi} defined in Theorem 1, we have the following equality
Pr[Xi = 1|Xj = 1] = Pr[Xi = 1|X1 = 1], 1  j < i  N  d.

Proof. Pr[Xi = 1|Xj = 1] = Pr[hwi(a) 6= hwi(b)|Xj = 1] = Pr[hvi�⌃i�1
k=1wkwT

k vi
(a) 6=

hvi�⌃i�1
k=1wkwT

k vi
(b)|hwj (a) 6= hwj (b)]. Since {w1, ...wi�1} is a uniformly random orthonormal
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basis of a random subspace uniformly distributed on Grassmann manifold, by exchanging the index
j and 1 we have that equals Pr[hvi�⌃i�1

k=1wkwT
k vi

(a) 6= hvi�⌃i�1
k=1wkwT

k vi
(b)|hw1(a) 6= hw1(b)] =

Pr[Xi = 1|X1 = 1].

Lemma 6. For {Xi} defined in Theorem 1, we have Pr[Xi = 1|Xj = 1] = Pr[X2 = 1|X1 = 1],
1  j < i  N  d. Given ✓a,b 2 (0, ⇡

2 ], we have Pr[X2 = 1|X1 = 1] < ✓a,b

⇡ .

The proof of this lemma is long, thus we provide it in the Appendix (in supplementary file).
Theorem 2. Given two vectors a, b 2 Rd and random variables {Xi} defined as in Theorem 1,
denote p2,1 = Pr[X2 = 1|X1 = 1], and SX = ⌃

N
i=1Xi which is the Hamming distance between

the N -Super-Bits of a and b, for 1 < N  d, then V ar[SX ] =

N✓a,b

⇡ +N(N�1)

p2,1✓a,b

⇡ �(

N✓a,b

⇡ )

2.

Proof. By Lemma 6, Pr[Xi = 1|Xj = 1] = Pr[X2 = 1|X1 = 1] = p2,1 when 1  j < i  N .
Therefore Pr[Xi = 1, Xj = 1] = Pr[Xi = 1|Xj = 1]Pr[Xj = 1] =

p2,1✓a,b

⇡ , for any 1  j <
i  N . Therefore V ar[SX ] = E[S2

X ] � E[SX ]

2
= ⌃

N
i=1E[X2

i ] + 2⌃j<iE[XiXj ] �N2E[X1]
2

=

N✓a,b

⇡ + 2⌃j<iPr[Xi = 1, Xj = 1]� (

N✓a,b

⇡ )

2
=

N✓a,b

⇡ + N(N � 1)

p2,1✓a,b

⇡ � (

N✓a,b

⇡ )

2.

Corollary 2. Denote V ar[SBLSHN,K ] as the variance of the Hamming distance produced by
SBLSH, where 1  N  d is the Super-Bit depth, and K = N ⇥ L is the code length. Then
V ar[SBLSHN,K ] = L⇥V ar[SBLSHN,N ]. Furthermore, given ✓a,b 2 (0, ⇡

2 ], if K = N1⇥L1 =

N2 ⇥ L2 and 1  N2 < N1  d, then V ar[SBLSHN1,K ] < V ar[SBLSHN2,K ].

Proof. Since v1, v2, ..., vK are independently sampled, and w1, w2, ..., wK are produced by orthog-
onalizing every N vectors, the Hamming distances produced by different N -Super-Bits are inde-
pendent, thus V ar[SBLSHN,K ] = L⇥ V ar[SBLSHN,N ].

Therefore V ar[SBLSHN1,K ] = L1⇥(

N1✓a,b

⇡ +N1(N1�1)

p2,1✓a,b

⇡ �(

N1✓a,b

⇡ )

2
) =

K✓a,b

⇡ +K(N1�
1)

p2,1✓a,b

⇡ � KN1(
✓a,b

⇡ )

2. By Lemma 6, when ✓a,b 2 (0, ⇡
2 ], for N1 > N2 > 1, 0  p2,1 < ✓a,b

⇡ .
Therefore V ar[SBLSHN1,K ] � V ar[SBLSHN2,K ] =

K✓a,b

⇡ (N1 � N2)(p2,1 � ✓a,b

⇡ ) < 0. For
N1 > N2 = 1, V ar[SBLSHN1,K ]� V ar[SBLSHN2,K ] =

K✓a,b

⇡ (N1 � 1)(p2,1 � ✓a,b

⇡ ) < 0

Corollary 3. Denote V ar[SRPLSHK ] as the variance of the Hamming distance produced by SRP-
LSH, where K = N ⇥ L is the code length and L is a positive integer, 1 < N  d. If ✓a,b 2 (0, ⇡

2 ],
then V ar[SRPLSHK ] > V ar[SBLSHN,K ].

Proof. By Corollary 2, V ar[SRPLSHK ] = V ar[SBLSH1,K ] > V ar[SBLSHN,K ].

2.2.1 Numerical verification

  

 2/ߨ

Figure 2: The variances of SRP-LSH and SBLSH against the angle ✓a,b to estimate.

In this subsection we verify numerically the behavior of the variances of both SRP-LSH and SBLSH
for different angles ✓a,b 2 (0, ⇡]. By Theorem 2, the variance of SBLSH is closely related to p2,1

defined in Theorem 2. We randomly generate 30 points in R10, which involves 435 angles. For
each angle, we numerically approximate p2,1 using sampling method, where the sample number is
1000. We fix K = N = d, and plot the variances V ar[SRPLSHN ] and V ar[SBLSHN,N ] against
various angles ✓a,b. Figure 2 shows that when ✓a,b 2 (0, ⇡/2], SBLSH has a much smaller variance
than SRP-LSH, which verifies the correctness of Corollary 3 to some extent. Furthermore, Figure 2
shows that even when ✓a,b 2 (⇡/2, ⇡], SBLSH still has a smaller variance.
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2.3 Discussion

From Corollary 1, SBLSH provides an unbiased estimate of angular similarity. From Corollary
3, when ✓a,b 2 (0, ⇡/2], with the same length of binary code, the variance of SBLSH is strictly
smaller than SRP-LSH. In real applications, many vector representations are limited in non-negative
orthant with all vector entries being non-negative, e.g., bag-of-words representation of documents
and images, and histogram-based representations like SIFT local descriptor [20]. Usually they are
normalized to unit length, with only their orientations maintained. For this kind of data, the angle
of any two different samples is limited in (0, ⇡/2], and thus SBLSH will provide more accurate
estimation than SRP-LSH on such data. In fact, our later experiments show that even when ✓a,b is
not constrained in (0, ⇡/2], SBLSH still gives much more accurate estimate of angular similarity.

3 Experimental Results

We conduct two sets of experiments, angular similarity estimation and approximate nearest neighbor
(ANN) retrieval, to evaluate the effectiveness of our proposed SBLSH method. In the first set of
experiments we directly measure the accuracy in estimating pairwise angular similarity. The second
set of experiments then test the performance of SBLSH in real retrieval applications.

3.1 Angular Similarity Estimation

In this experiment, we evaluate the accuracy of estimating pairwise angular similarity on several
datasets. Specifically, we test the effect to the estimation accuracy when the Super-Bit depth N
varies and the code length K is fixed, and vice versa. For each preprocessed data D, we get DLSH

after performing SRP-LSH, and get DSBLSH after performing the proposed SBLSH. We compute
the angles between each pair of samples in D, the corresponding Hamming distances in DLSH and
DSBLSH . We compute the mean squared error between the true angle and the approximated angles
from DLSH and DSBLSH respectively. Note that after computing the Hamming distance, we divide
the result by C = K/⇡ and get the approximated angle.

3.1.1 Datasets and Preprocessing

We conduct the experiment on the following datasets:

1) Photo Tourism patch dataset1 [26], Notre Dame, which contains 104,106 patches, each of which
is represented by a 128D SIFT descriptor (Photo Tourism SIFT); and 2) MIR-Flickr2, which con-
tains 25,000 images, each of which is represented by a 3125D bag-of-SIFT-feature histogram;

For each dataset, we further conduct a simple preprocessing step as in [12], i.e. mean-centering each
data sample, so as to obtain additional mean-centered versions of the above datasets, Photo Tourism
SIFT (mean), and MIR-Flickr (mean). The experiment on these mean-centered datasets will test the
performance of SBLSH when the angles of data pairs are not constrained in (0, ⇡/2].

3.1.2 The Effect of Super-Bit Depth N and Code Length K

 

SRP-LSH 

SBLSH 

Mean+SRP-LSH 

Mean+SBLSH 

 

SRP-LSH 

SBLSH 

Mean+SRP-LSH 

Mean+SBLSH 

 

SRP-LSH 

SBLSH 

Mean+SRP-LSH 

Mean+SBLSH 

 

SRP-LSH 

SBLSH 

Mean+SRP-LSH 

Mean+SBLSH 

Figure 3: The effect of Super-Bit depth N (1 < N  min(d,K)) with fixed code length K (K =

N ⇥ L), and the effect of code length K with fixed Super-Bit depth N .

1
http://phototour.cs.washington.edu/patches/default.htm

2
http://users.ecs.soton.ac.uk/jsh2/mirflickr/
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Table 1: ANN retrieval results, measured by proportion of good neighbors within query’s Hamming
ball of radius 3. Note that the code length K = 30.

Data E2LSH SRP-LSH SBLSH

Notre Dame 0.4675 ± 0.0900 0.7500 ± 0.0525 0.7845± 0.0352
Half Dome 0.4503 ± 0.0712 0.7137 ± 0.0413 0.7535± 0.0276
Trevi 0.4661 ± 0.0849 0.7591 ± 0.0464 0.7891± 0.0329

In each dataset, for each (N,K) pair, i.e. Super-Bit depth N and code length K, we randomly
sample 10,000 data, which involve about 50,000,000 data pairs, and randomly generate SRP-LSH
functions, together with SBLSH functions by orthogonalizing the generated SRP in batches. We
repeat the test for 10 times, and compute the mean squared error (MSE) of the estimation.

To test the effect of Super-Bit depth N , we fix K = 120 for Photo Tourism SIFT and K = 3000 for
MIR-Flickr respectively, and to test the effect of code length K, we fix N = 120 for Photo Tourism
SIFT and N = 3000 for MIR-Flickr. We repeat the experiment on the mean-centered versions of
these datasets, and denote the methods by Mean+SRP-LSH and Mean+SBLSH respectively.

Figure 3 shows that when using fixed code length K, as the Super-Bit depth N gets larger
(1 < N  min(d,K)), the MSE of SBLSH gets smaller, and the gap between SBLSH and SRP-
LSH gets larger. Particularly, when N = K, over 30% MSE reduction can be observed on all the
datasets. This verifies Corollary 2 that when applying SBLSH, the best strategy would be to set the
Super-Bit depth N as large as possible, i.e. min(d,K). An informal explanation to this interesting
phenomenon is that as the degree of orthogonality of the random projections gets higher, the code
becomes more and more informative, and thus provides better estimate. On the other hand, it can be
observed that the performances on the mean-centered datasets are similar as on the original datasets.
This shows that even when the angle between each data pair is not constrained in (0, ⇡/2], SBLSH
still gives much more accurate estimation.

Figure 3 also shows that with fixed Super-Bit depth N SBLSH significantly outperforms SRP-LSH.
When increasing the code length K, the accuracies of SBLSH and SRP-LSH shall both increase.
The performances on the mean-centered datasets are similar as on the original datasets.

3.2 Approximate Nearest Neighbor Retrieval

In this subsection, we conduct ANN retrieval experiment, which compares SBLSH with two other
widely used data-independent binary LSH methods: SRP-LSH and E2LSH (we use the binary ver-
sion in [25, 1]). We use the datasets Notre Dame, Half Dome and Trevi from the Photo Tourism
patch dataset [26], which is also used in [12, 10, 13] for ANN retrieval. We use 128D SIFT repre-
sentation and normalize the vectors to unit norm. For each dataset, we randomly pick 1,000 samples
as queries, and the rest samples (around 100,000) as the corpus for the retrieval task. We define
the good neighbors to a query q as the samples within the top 5% nearest neighbors (measured in
Euclidean distance) to q. We adopt the evaluation criterion used in [12, 25], i.e. the proportion of
good neighbors in returned samples that are within the query’s Hamming ball of radius r. We set
r = 3. Using code length K = 30, we repeat the experiment for 10 times and take the mean of the
results. For SBLSH, we fix the Super-Bit depth N = K = 30. Table 1 shows that SBLSH performs
best among all these data-independent hashing methods.

4 Relations to Other Hashing Methods

There exist different kinds of LSH methods, e.g. bit-sampling LSH [9, 7] for Hamming distance
and `1-distance, min-hash [2] for Jaccard coefficient, p-stable-distribution LSH [6] for `p-distance
when p 2 (0, 2]. These data-independent methods are simple, thus easy to be integrated as a module
in more complicated algorithms involving pairwise distance or similarity computation, e.g. nearest
neighbor search. New data-independent methods for improving these original LSH methods have
been proposed recently. [1] proposed a near-optimal LSH method for Euclidean distance. Li et al.
[16] proposed b-bit minwise hash which improves the original min-hash in terms of compactness.
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[17] shows that b-bit minwise hash can be integrated in linear learning algorithms for large-scale
learning tasks. [14] reduces the variance of random projections by taking advantage of marginal
norms, and compares the variance of SRP with regular random projections considering the margins.
[15] proposed very sparse random projections for accelerating random projections and SRP.

Prior to SBLSH, SRP-LSH [3] was the only hashing method proven to provide unbiased estimate of
angular similarity. The proposed SBLSH method is the first data-independent method that outper-
forms SRP-LSH in terms of higher accuracy in estimating angular similarity.

On the other hand, data-dependent hashing methods have been extensively studied. For example,
spectral hashing [25] and anchor graph hashing [19] are data-dependent unsupervised methods.
Kulis et al. [13] proposed kernelized locality-sensitive hashing (KLSH), which is based on SRP-
LSH, to approximate the angular similarity in very high or even infinite dimensional space induced
by any given kernel, with access to data only via kernels. There are also a bunch of works devoted
to semi-supervised or supervised hashing methods [10, 21, 23, 24, 18], which try to capture not only
the geometry of the original data, but also the semantic relations.

5 Discussion

Instead of the Gram-Schmidt process, we can use other method to orthogonalize the projection
vectors, e.g. Householder transformation, which is numerically more stable. The advantage of
Gram-Schmidt process is its simplicity in describing the algorithm.

In the paper we did not test the method on data of very high dimension. When the dimension is high,
and N is not small, the Gram-Schmidt process will be computationally expensive. In fact, when the
dimension of data is very high, the random normal projection vectors {vi}i=1,2...,K will tend to be
orthogonal to each other, thus it may not be very necessary to orthogonalize the vectors deliberately.

From Corollary 2 and the results in Section 3.1.2, we can see that the closer the Super-Bit depth N
is to the data dimension d, the larger the variance reduction SBLSH achieves over SRP-LSH.

A technical report3 (Li et al.) shows that b-bit minwise hashing almost always has a smaller variance
than SRP in estimating Jaccard coefficient on binary data. The comparison of SBLSH with b-bit
minwise hashing for Jaccard coefficient is left for future work.

6 Conclusion and Future Work

The proposed SBLSH is a data-independent hashing method which significantly outperforms SRP-
LSH. We have theoretically proved that SBLSH provides an unbiased estimate of angular similarity,
and has a smaller variance than SRP-LSH when the angle to estimate is in (0, ⇡/2]. The algorithm
is simple, easy to implement and can be integrated as a basic module in more complicated algo-
rithms. Experiments show that with the same length of binary code, SBLSH achieves over 30%
mean squared error reduction over SRP-LSH in estimating angular similarity, when the Super-Bit
depth N is close to the data dimension d. Moreover, SBLSH performs best among several widely
used data-independent LSH methods in approximate nearest neighbor retrieval experiments. Theo-
retically exploring the variance of SBLSH when the angle is in (⇡/2, ⇡] is left for future work.

Acknowledgments

This work was supported by the National Basic Research Program (973 Program) of China (Grant
Nos. 2013CB329403 and 2012CB316301), National Natural Science Foundation of China (Grant
Nos. 91120011 and 61273023), and Tsinghua University Initiative Scientific Research Program
No.20121088071, and NExT Research Center funded under the research grant WBS. R-252-300-
001-490 by MDA, Singapore. And it was supported in part to Dr. Qi Tian by ARO grant W911BF-
12-1-0057, NSF IIS 1052851, Faculty Research Awards by Google, FXPAL, and NEC Laboratories
of America, respectively.

3
www.stat.cornell.edu/

˜

li/hashing/RP_minwise.pdf

8



References
[1] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in

high dimensions. In Annual IEEE Symposium on Foundations of Computer Science, 2006.
[2] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntactic clustering of

the web. Computer Networks, 29(8-13):1157–1166, 1997.
[3] Moses Charikar. Similarity estimation techniques from rounding algorithms. In ACM Symposium on

Theory of Computing, 2002.
[4] Yasuko Chikuse. Statistics on Special Manifolds. Springer, February 2003.
[5] Ondrej Chum, James Philbin, and Andrew Zisserman. Near duplicate image detection: min-hash and

tf-idf weighting. In British Machine Vision Conference, 2008.
[6] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing scheme

based on p-stable distributions. In Symposium on Computational Geometry, 2004.
[7] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hashing. In

International Conference on Very Large Databases, 1999.
[8] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut and

satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115–1145, 1995.
[9] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of dimen-

sionality. In ACM Symposium on Theory of Computing, 1998.
[10] Prateek Jain, Brian Kulis, and Kristen Grauman. Fast image search for learned metrics. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2008.
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