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This supplement presents a derivation of the partial derivatives of the GPIRL log likelihood in Equa-
tion 4 of the paper with respect to each variable in the optimization, as well as additional details
regarding the warped kernel function in Section 6 and a restart technique that was used to avoid
local optima. We decompose the log likelihood into three parts:
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The terms Lg and L4, are denoted in Equation 4 by the expression “log P(u, 8|X,,).” In Appendix
A, we derive the partial derivatives of Lp with respect to the reward function r, while in Appendix B
we derive the partial derivatives of Lg and r with respect to the hyperparameters 8 and the inducing
points u. Appendix C derives the partial derivatives for the hyperparameter priors £,. Appendix
D derives the derivatives of the warped kernel function discussed in Section 6 of the paper and
describes the priors used on each warp parameter. Finally, Appendix E describes a simple restart
procedure we used to avoid local optima, which is particularly useful when using the warped kernel.

A Derivatives of the IRL Log Likelihood

To find the derivatives of the IRL log likelihood in Equation 1 of the paper, we first rewrite the IRL
log likelihood in terms of only the reward and value functions:
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Differentiating with respect to the reward, we obtain the following:
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The first term in the summation is simply the empirical visitation count of each state-action pair,
denoted /i and given by fisa = >, >, s, ,=snai—a- = E[u|s],




the expected visitation count of each state-action pair when starting from state s and following the
optimal stochastic policy. The partial derivatives of Lp are then given by
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where U5 = Y fisa — D 9 ¥ Ts "', We can compute fi = Y. 75 E [u|s] efficiently for any
vector ¥ using a simple iterative algorithm described in [2]:
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Intuitively, the algorithm repeatedly updates the state-action visitation frequencies ji by distributing
the current probability mass to successor states according to the transition function 7, and then
distributing the mass in each state into actions according to the optimal stochastic policy 7, given by
m(sla) = exp (Q%, — V%). The value function V" is obtained by repeatedly applying the modified
Bellman backup operator, given by
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The final derivative is given by ag—f = [ — [

B Derivatives of the GP Marginal Likelihood

The GP marginal likelihood, given in Equation 3 in the paper, consists of the fitting term

—%uTK;’hu and the normalizing term —% log |Ky u|- To obtain partial derivatives with respect

to a particular hyperparameter 8, we follow Rasmussen and Williams [1]:
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where o = K;}uu. The partial derivatives with respect to the inducing points u are simply given by

68% = —a. We must also compute the contribution of the IRL term Lp to the gradient with respect

to 6 and u. Since we have the gradient of £p with respect to r, it remains to compute the partial
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We must also compute the partial derivatives of the kernel matrices K, ,, and K, ,, with respect to
the hyperparameters 6 by differentiating the regularized kernel function in Equation 5 of the paper:
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where )\ denotes the £ diagonal entry in A. The final gradient of the log likelihood is
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The prior gradients %ﬁ are given in the next section.

C Derivatives of Hyperparameter Priors

The general hyperparameter prior described in Section 4 of the paper consists of the inverse covari-
ance term —3tr(K;?%) and the sparsity-inducing penalty ¢(A) = 3, log(Ay; + 1). The partial
derivatives of the covariance term are given by
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The derivatives of the penalty term with respect to the diagonal entries of A are simply
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The partial derivatives of the log prior with respect to the hyperparameters are therefore given by
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D Details of the Warped Kernel Function

Described in Section 6 of the paper, the warped kernel is an alternative kernel function that can
be used to learn piecewise constant rewards. The warped kernel function transforms the feature
coordinates according to a parameterized sigmoid, centered at m and scaled by £. The warp also
affects the contribution of noise to the expected distance between two points along each coordinate
k, so that it is no longer given by 202, but instead approximated to first order by o (w¢ (z1) +
wg(xjk)), where wf (z;x) = g;”’; + i and sy, is a learned parameter that prevents degeneracies in
the “tails” of the sigmoid. To derive w{, we differentiate wy, with respect to x;:
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where z;, = —Zit—Mk To optimize the warp parameters, we add them to 6. During optimization,

we must compute the partial derivatives of the kernel function with respect to each hyperpameter.
For each of the warp parameters py, € {my, {k, Sk}, these partial derivatives are given by
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The derivatives of wj, and w{ can be computed by first defining two intermediate variables:
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Note that, even as £;, — 0, h and g remain numerically stable. The derivatives are now given by
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We also place a prior on each warp parameter. Since the features in our examples are positive, we
use a gamma prior on m with shape parameter a = 2 and scale b = 2. To encourage sharp, narrow
sigmoids, we use unit variance Gaussian priors on £ and s. The derivatives are given by
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where the first term in each sum is the derivative of the inverse covariance term from Appendix C.

E Avoiding Local Optima

The standard regularized kernel presented in Equation 5 of the paper is often able to produce a good
solution with a single run of the L-BFGS optimization procedure, though a few random restarts can
provide minor improvement. The warped kernel is more susceptible to local optima, and random
restarts are necessary to obtain good results on more complex examples. First, we run each opti-
mization 5 times, each time with a random initial setting for u. When using the warped kernel, we
then perform 5 more restarts, where u is initialized to the final value of the best run so far (the one
with the highest likelihood) and the sigmoid centers m are resampled at random from their prior
gamma distribution, while all other parameters are reset to their initial values. With the standard
kernel, only one such restart is used, since there are no sigmoid centers.
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