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Algorithm 1 Column Generation Method for Structured Output Learning

1: w(1) = wp

2: k = 1 and Γi = ∅ ∀i
3: repeat
4: for i = 1, .., n do
5: y∗ = argmaxy∈Υ {〈w(k),Ψ(xi,y)〉+ ∆(yi,y)}
6: if 〈w(k),Ψ(xi,y

∗)〉+ ∆(yi,y
∗) > max

(Ψ,∆)∈Γi

{〈w(k),Ψ〉+ ∆} then

7: Γi = Γi ∪ (Ψ(xi,y
∗),∆(yi,y

∗))
8: end if
9: end for

10: w(k) = argmin
w∈H

{
Rp,γ(w) + C

n∑
i=1

`

(
max

(Ψ,∆)∈Γi

{〈w,Ψ〉+ ∆} − 〈w,Ψ(xi, yi)〉
)}

11: k = k + 1
12: until no changes in (Ψi,∆i) ∀i

2 Details on Eukaryotic Gene Finding

These sections provide additional detail on our method for inferring the exon-
intron structure of eukaryotic genes using RNA-seq data and computational
splice site predictions.

RNA-seq data for C. elegans was aquired using a strand-specific, paired-end
protocol for Illumina sequencing (2x76bp read length).

Subsequently, RNA-seq reads were mapped to the genome using methods
able to align reads across splice junctions (we used [3], other possibilities include
[2, 7]). Moreover, we exploited splice site predictions made from the genome
sequence with SVMs and string kernels as described previously [6]. Their in-
corporation into gene prediction was done in a way that is very similar to a
recently developed gene finding system [5].

The structured-output inference methods used here extend a previously pub-
lished approach [9] based on hidden Markov support vector machines [1, 8]. In
essence, feature values from the input sequence x are transformed by piece-
wise linear functions, which depend on the state yi and feature type. These
thus make up an integral part of Ψ(x,y), and their parametrization consti-
tutes part of the parameter vector w [9, 4]. The result of these feature trans-
formations is linearly combined in a discriminant function F (x,y;w) to yield
F (x,y;w) = 〈w,Ψ(x,y)〉 [1, 8, 9]. Since the discriminant function assigns a
real-valued score to a combination of feature sequence x and label sequence
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y, decoding for its argmax yields the highest-scoring label sequence with for a
given x and w [1, 8, 9].

2.1 Features

The following features derived from RNA-seq read alignments (independent of
the label sequence y) were used as input sequence x:

• number of reads aligned at the given position, indicating an exon.

• number of spliced reads that span the given position (strand-specific),
indicating an intron.

• number of spliced reads supporting a donor splice site at the given position
(strand-specific).

• number of spliced reads supporting an acceptor splice site (strand-specific).

• number of paired-read alignments spanning the given position (if read
pair information is available, strand-specific), an indicator of transcript
connectivity.

Moreover, we used splice site prediction features (see [6] for details):

• donor splice site prediction transformed to a probabilistic confidence (strand-
specific).

• probabilistic acceptor splice site prediction confidence (strand-specific).
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2.2 State model
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Figure 1: State model utilized for
eukaryotic gene finding. Ovals cor-
respond to states and arrows indi-
cate allowed transitions. The corre-
spondence between states and atomic
labels is color-coded. The first
and last intron states are associated
with splice site signals at exon-intron
junctions. The model is strand-
specific and consists of econfirmation-
specific submodels (columns and
state-subscripts, see label at bottom)
which allows optimizing different pa-
rameter sets depending on the exper-
imental support of a given gene.

2.3 Loss function

The loss function captures our problem-specific knowledge about how much a
given label sequence deviates and from the correct one and how the margin
should be rescaled. The loss ∆(y, ŷ) between the correct label sequence y and
any predicted labeling ŷ is composed of position-wise loss terms:

∆(y, ŷ) =

|y|∑
i=1

δb(yi, ŷi) + δs(yi, ŷi) + δei(yi, ŷi) + δfp(yi, ŷi) + δfn(yi, ŷi).

Most importantly, we penalize wrong segment boundaries by an intron-boundary
loss:

δb(yi, ŷi) =


10 if yi 6= ŷi and any of them is the first or last intron position

(any acc or don state, see Fig. 1),

0 otherwise.

Additionally there is a loss for predictions on the wrong strand:

δs(yi, ŷi) =

{
0.1 if yi and ŷi correspond to different strands (see Fig. 1),

0 otherwise,
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a loss for exon-intron confusions:

δei(yi, ŷi) =


0.1 if either yi or ŷi is an exon state

and the other one an intron state (see Fig. 1),

0 otherwise,

a loss for positions in false-positive gene predictions:

δfp(yi, ŷi) =

{
0.5 if yi 6= ŷi and yi = S (see Fig. 1)

0 otherwise,

and a loss for positions in false-negative gene predictions:

δfn(yi, ŷi) =

{
0.5 if yi 6= ŷi and ŷi = S (see Fig. 1)

0 otherwise.

Furthermore there are smaller loss terms (< 0.05, omitted above) for exon states
with incorrect expression level.

3 Tabular Results for Prokaryotic MTL

Independent (std) Union (std) MTL (std)
E.coli 0.7985 0.0445 0.9501 0.0100 0.9573 0.0125
E.fergusonii 0.7262 0.0303 0.9573 0.0065 0.9651 0.0027
A.tumefaciens 0.7796 0.0744 0.8707 0.0362 0.9112 0.0111
H.pylori 0.7760 0.0983 0.9424 0.0087 0.9533 0.0133
B.anthracis 0.8387 0.0490 0.9184 0.0257 0.9234 0.0198
B.subtilis 0.7652 0.1751 0.9399 0.0243 0.9453 0.0283
M.smithii 0.9048 0.0136 0.9392 0.0106 0.9416 0.0072
S.islandicus 0.8151 0.0595 0.9149 0.0115 0.9263 0.0096
mean 0.8005 0.0681 0.9291 0.0167 0.9404 0.0131
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[4] G. Rätsch and S. Sonnenburg. Large scale hidden semi-Markov SVMs. Proceedings
of NIPS, 2007.

4



[5] G. Schweikert, A. Zien, G. Zeller, J. Behr, C. Dieterich, C. S. Ong, P. Philips, F. D.
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ization and segmentation of tiling array data. Pacific Symposium on Biocomputing,
pages 527–38, 2008.

5


