
Appendix A.1: Inference for MT-iLSVM

In this section, we provide the deviation of the inference algorithm for MT-iLSVM, which is outlined
in Alg. 1 and detailed below.

For MT-iLSVM, the model M consists of all the latent variables (ν,W,Z,η). Let Lmn(p)
def
=

Ep[log p(xmn|Z,wmn, λ
2
mn)] be the expected data likelihood. Then, under the truncated mean-

field assumption (14), we have

Lmn(p) = −x⊤
mnxmn − 2x⊤

mnEp[Zwmn] + Ep[w
⊤
mnUwmn]

2λ2
mn

− D log(2πλ2
mn)

2
,

where x⊤
mnEp[Zwmn] =

∑
k x⊤

mnψ.k; ψ.k
def
= (ψ1k · · ·ψDk)⊤ is the kth column of ψ = E[Z];

Ep[w
⊤
mnUwmn] = 2

∑

j<k

ϕj
mnϕ

k
mnUjk +

∑

k

Ukk(Kσ2
mn + Φ⊤

mnΦmn);

and U
def
= E[Z⊤Z] is a K ×K matrix, whose element is

Uij =

{∑
d ψdi, if i = j∑
d ψdiψdj , otherwise.

For the KL-divergence term, we have KL(p(M)∥π(M)) = KL(p(ν)∥π(ν)) +
KL(p(W)∥π(W)) + KL(p(Z)∥π(Z)) + KL(p(η)∥π(η)), where the individual terms are

KL(p(ν)∥π(ν)) =
K∑

k=1

(
(γk1 − α)(ψ(γk1) − ψ(γk1 + γk2)) + (γk2 − 1)(ψ(γk2) − ψ(γk1 + γk2))

− log
Γ(γk1)Γ(γk2)

Γ(γk1 + γk2)

)
−K logα,

KL(p(Z)∥π(Z)) =
∑

dk

(
− ψdk

k∑

j=1

Ep[log νj ] − (1 − ψdk)Ep[log(1 −
k∏

j=1

νj)]

+ψdk logψdk + (1 − ψdk) log(1 − ψdk)
)

KL(p(W)∥π(W)) =
∑

mn

(Kσ2
mn + Φ⊤

mnΦmn

2σ2
m0

−
K(1 + log

σ2
mn

σ2
m0

)

2

)
.

where ψ(·) is the digamma function and Ep[log vj ] = ψ(γj1)−ψ(γj1 + γj2). For KL(p(η)∥π(η)),
we do not need to write it explicitly, as we shall see. Finally, the effective discriminant function is

fm(xmn; p(Z,η)) = η⊤
mψ

⊤xmn =
K∑

k=1

Ep[ηmk]ψ⊤
.kxmn.

All the above terms can be easily computed, except the term Ep[log(1 − ∏k
j=1 νj)]. Here, we adopt

the multivariate lower bound [9]

Ep[log(1 −
k∏

j=1

νj)] ≥
k∑

m=1

qkmψ(γm2) +

k−1∑

m=1

(

k∑

n=m+1

qkn)ψ(γm1) −
k∑

m=1

(

k∑

n=m

qkn)ψ(γm1 + γm2)+H(qk.),

where the variational parameters qk. = (qk1 · · · qkk)⊤ belong to the k-simplex, and H(qk.) is the
entropy of qk.. The tightest lower bound is achieved by setting qk. to be the optimum value

qkm =
1

Zk
exp

(
ψ(γm2) +

m−1∑

n=1

ψ(γn1) −
m∑

n=1

ψ(γn1 + γn2)
)
, (17)

where Zk is a normalization factor to make qk. be a distribution. We denote the tightest lower bound
by Lν

k. Replacing the term Ep[log(1 −∏k
j=1 νj)] with its lower bound Lν

k, we can have an upper
bound of KL(p(M)∥π(M)) and we denote this upper bound by L(p).
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Algorithm 1 Inference Algorithm of MT-iLSVM

1: Input: data D = {(xmn, ymn)}m,n∈Im
tr

∪ {xmn}m,n∈Im
tst

, constants α and C
2: Output: distributions p(ν), p(Z), p(W), p(η) and hyper-parameters σ2

m0 and λ2
mn

3: Initialize γk1 = α, γk2 = 1, ψdk = 0.5 + ϵ, where ϵ ∼ N (0, 0.001), Φmn = 0, σ2
mn = σ2

m0 =
1, µm = 0, λ2

mn is computed from D.
4: repeat
5: repeat
6: update (γk1, γk2) using Eq. (19), ∀1 ≤ k ≤ K;
7: update ϕk

mn and σ2
mn using Eq. (18), ∀m,∀n,∀1 ≤ k ≤ K;

8: update ψdk using Eq. (20), ∀1 ≤ d ≤ D, ∀1 ≤ k ≤ K;
9: until relative change of L is less than τ (e.g., 1e−3) or iteration number is T (e.g., 10)

10: for m = 1 to M do
11: solve the dual problem (21) using a binary SVM learner.
12: end for
13: update the hyper-parameters σ2

m0 using Eq. (22) and λ2
mn using Eq. (23). (Optional)

14: until relative change of L is less than τ ′ (e.g., 1e−4) or iteration number is T ′ (e.g., 20)

With the above terms and the upper bound L(p), we use the Lagrangian method with the Lagrangian
multipliers ω, one for each margin constraint, and u for the nonnegativity constraint of ξ. We have
the Lagrangian functional

L(p, ξ,ω,u) = L(p) −
∑

mn

Lmn(p) −
∑

m,n∈Im
tr

ωmn

(
ymn(Ep[ηm]⊤ψ⊤xmn) − 1 + ξmn

)
− u⊤ξ.

Then, the inference procedure iteratively solves the following steps:

Infer p(ν), p(Z) and p(W): For p(W), since both the prior π(W) and p(W) are Gaussian, we
can easily derive the update rules, similar as in Gaussian mixture models

ϕk
mn =

∑
d x

d
mnψdk − ∑

j ̸=k ϕ
j
mnUkj

λ2
mn

( 1

σ2
m0

+

∑
d ψdk

λ2
mn

)−1

(18)

σ2
mn =

( 1

σ2
m0

+
1

K

∑

k

Ukk

λ2
mn

)−1

For p(ν), we have the update rules similar as in [9], that is,

γk1 = α+
K∑

m=k

D∑

d=1

ψdm +
K∑

m=k+1

(D −
D∑

d=1

ψdm)(
m∑

i=k+1

qmi) (19)

γk2 = 1 +
K∑

m=k

(D −
D∑

d=1

ψdm)qmk.

For p(Z), we have the mean-field update equation as

ψdk =
1

1 + e−ϑdk
, (20)

where

ϑdk =

k∑

j=1

Ep[log vj ] − Lν
k −

∑

mn

1

2λ2
mn

(
(Kσ2

mn + (ϕk
mn)2)

−2xd
mnϕ

k
mn + 2

∑

j ̸=k

ϕj
mnϕ

k
mnψdj

)
+

∑

m,n∈Im
tr

ymnEp[ηmk]xd
mn.

Infer p(η) and solve for ω and ξ: We can optimize L to solve for q(η), which is

p(η) ∝ π(η) exp
{ ∑

m,n∈Im
tr

ymnωmnη
⊤
mψ

⊤xmn

}
=

M∏

m=1

π(ηm) exp
{
η⊤

m

( ∑

n∈Im
tr

ymnωmnψ
⊤xmn

)}
.
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Therefore, we can see that although we did not assume p(η) is factorized, we can get the induced
factorization form p(η) =

∏
m p(ηm), where

p(ηm) ∝ π(ηm) exp
{
η⊤

m

( ∑

n∈Im
tr

ymnωmnψ
⊤xmn

)}
.

Here, we assume π(ηm) is standard normal. Then, we have p(ηm) = N (ηm|µm, I), where

µm =
∑

n∈Im
tr

ymnωmnψ
⊤xmn.

Substituting the solution of p(η) into the Lagrangian functional, we get the M independent dual
problems

max
ωm

− 1

2
µ⊤

mµm +
∑

n∈Im
tr

ωmn s.t.. : 0 ≤ ωmn ≤ 1, ∀n ∈ Im
tr , (21)

which (and its primal form) can be efficiently solved with a binary SVM solver, such as SVM-light.

As we have stated, the hyperparameters σ2
0 and λ2

mn can be set a priori or estimated from the data.
The empirical estimation can be easily done with closed form solutions. For MT-iLSVM, we have

σ2
m0 =

∑Nm

n=1(Kσ
2
mn + Φ⊤

mnΦmn)

KNm
(22)

λ2
mn =

x⊤
mnxmn − 2x⊤

mnEp[Zwmn] + Ep[w
⊤
mnUwmn]

D
. (23)

Appendix A.2: Inference for Infinite Latent SVM

In this section, we develop the inference algorithm for iLSVM based on the stick-breaking construc-
tion of the IBP prior. The algorithm is outlined in Alg. 2 and detailed below.

Similar as in the inference for MT-iLSVM, we make the additional constraint about the feasible
distribution

p(ν,W,Z,η) = p(η)p(W|Φ,Σ)
∏

n

( K∏

k=1

p(znk|ψnk)
) K∏

k=1

p(νk|γk),

where K is the truncation level; p(W|Φ,Σ) =
∏

k N (W.k|Φ.k, σ
2
kI); p(znk|ϕnk) =

Bernoulli(ϕnk); and p(νk|γk) = Beta(γk1, γk2). Then, we solve the constrained problem us-
ing Lagrangian methods with Lagrangian multipliers being ω, one for each large-margin constraint,
and u for the nonnegativity constraints of ξ. Similarly, let Ln(p)

def
= Ep[log p(xn|zn,W)]. We have

Ln(p) = −x⊤
n xn − 2x⊤

n ΦEp[zn]⊤ + Ep[znAz⊤
n ]

2σ2
n0

− D log(2πσ2
n0)

2
, (24)

where A
def
= Ep[W

⊤W] is a K ×K matrix; x⊤
n ΦEp[zn]⊤ = 2

∑
k ψnk(x⊤

n Φ.k); and

Ep[znAz⊤
n ] = 2

∑

j<k

ψnjψnkAjk +
∑

k

ψnk(Dσ2
k + Akk).

The effective discriminant function is f(y,xn) =
∑

k Ep[η
k
y ]ψnk. Again, for computational

tractability, we need the lower bound Lν
k of the term Ep[log(1−∏k

j=1 vj)]. Using this lower bound,
we can get an upper bound of the KL-divergence term, and we denote the Lagrangian functional by
L(p, ξ,ω,u). Then, the inference procedure iteratively solves the following steps:

Infer p(ν), p(Z) and p(W): For p(W), we have the update rules

Φ.k =
∑

n

ψnk

σ2
n0

(
xn −

∑

j ̸=k

ψnjΦ.j

)(
1 +

∑

n

ψnk

σ2
n0

)−1

(25)

σ2
k =

(
1 +

∑

n

ψnk

σ2
n0

)−1

.
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Algorithm 2 Inference Algorithm of iLSVM

1: Input: data D = {(xn, yn)}n∈Itr ∪ {xn}n∈Itst , constants α and C
2: Output: distributions p(ν), p(Z), p(W), p(η) and hyper-parameters σ2

0 and σ2
n0

3: Initialize γk1 = α, γk2 = 1, ψnk = 0.5 + ϵ, where ϵ ∼ N (0, 0.001), Φ.k = 0, σ2
k = σ2

0 = 1,
µ = 0, σ2

n0 is computed from D.
4: repeat
5: repeat
6: update (γk1, γk2) using Eq. (26), ∀1 ≤ k ≤ K;
7: update Φ.k and σ2

k using Eq. (25), ∀1 ≤ k ≤ K;
8: update ψnk using Eq. (27), ∀n ∈ Itr, ∀1 ≤ k ≤ K;
9: update ψnk using Eq. (27), but ϑnk doesn’t have the last term, ∀n ∈ Itst, ∀1 ≤ k ≤ K;

10: until relative change of L is less than τ (e.g., 1e−3) or iteration number is T (e.g., 10)
11: solve the dual problem (28) (or its primal form) using a multi-class SVM learner.
12: update the hyper-parameters σ2

0 using Eq. (29) and σ2
n0 using Eq. (30). (Optional)

13: until relative change of L is less than τ ′ (e.g., 1e−4) or iteration number is T ′ (e.g., 20)

For p(ν), we have the update rules similar as in [9], that is,

γk1 = α+
K∑

m=k

N∑

n=1

ψnm +
K∑

m=k+1

(N −
N∑

n=1

ψnm)(
m∑

i=k+1

qmi) (26)

γk2 = 1 +
K∑

m=k

(N −
N∑

n=1

ψnm)qmk,

where q.k is computed in the same way as in Eq. (17). For p(Z), the mean-field update equation for
ψ is

ψnk =
1

1 + e−ϑnk
, (27)

where

ϑnk =
k∑

j=1

Ep[log vj ] − Lν
k(p) − 1

2σ2
n0

(Dσ2
k + Φ⊤

.kΦ.k)

+
1

σ2
n0

Φ⊤
.k

(
xn −

∑

j ̸=k

ψnjΦ.j

)
+

∑

y

ωy
nEp[η

k
yn

− ηk
y ].

For testing data, ϑnk does not have the last term because of the absence of large-margin constraints.

Infer p(η) and solve for (ξ,ω,u): We can optimize L to solve for q(η), which is

p(η) ∝ π(η) exp
{
η⊤(

∑

n∈Itr

∑

y

ωy
nEp[g(yn,xn, zn) − g(y,xn, zn)])

}
.

For the standard normal prior π(η), we have that q(η) is also normal, with mean

µ =
∑

n∈Itr

∑

y

ωy
dEp[g(yn,xn, zn) − g(y,xn, zn)]

and identity covariance matrix. Substituting the solution of p(η) into the Lagrangian functional, we
get the dual problem

max
ω

− 1

2
µ⊤µ+

∑

n∈Itr

∑

y

ωy
n s.t.. : 0 ≤

∑

y

ωy
n ≤ C, ∀n ∈ Itr, (28)

which (and its primal form) can be efficiently solved with a multi-class SVM solver.

Similar as in MT-iLSVM, the hyperparameters σ2
0 and σ2

n0 can be set a priori or estimated from the
data. The empirical estimation can be easily done with closed form solutions. For iLSVM, we have

σ2
0 =

∑K
k=1(Dσ

2
k + Φ⊤

.kΦk)

KD
(29)

σ2
n0 =

x⊤
n xn − 2x⊤

n ΦEp[zn]⊤ + Ep[znAz⊤
n ]

D
. (30)
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