Appendix A.1: Inference for MT-iLSVM

In this section, we provide the deviation of the inference algorithm for MT-iLSVM, which is outlined in Alg. 1 and detailed below.

For MT-iLSVM, the model \mathcal{M} consists of all the latent variables $(\boldsymbol{\nu}, \mathbf{W}, \mathbf{Z}, \boldsymbol{\eta})$. Let $L_{mn}(p) \stackrel{\text{def}}{=} \mathbb{E}_p[\log p(\mathbf{x}_{mn} | \mathbf{Z}, \mathbf{w}_{mn}, \lambda_{mn}^2)]$ be the expected data likelihood. Then, under the truncated mean-field assumption (14), we have

$$L_{mn}(p) = -\frac{\mathbf{x}_{mn}^{\top}\mathbf{x}_{mn} - 2\mathbf{x}_{mn}^{\top}\mathbb{E}_p[\mathbf{Z}\mathbf{w}_{mn}] + \mathbb{E}_p[\mathbf{w}_{mn}^{\top}\mathbf{U}\mathbf{w}_{mn}]}{2\lambda_{mn}^2} - \frac{D\log(2\pi\lambda_{mn}^2)}{2}$$

where $\mathbf{x}_{mn}^{\top} \mathbb{E}_p[\mathbf{Z}\mathbf{w}_{mn}] = \sum_k \mathbf{x}_{mn}^{\top} \boldsymbol{\psi}_{.k}; \boldsymbol{\psi}_{.k} \stackrel{\text{def}}{=} (\psi_{1k} \cdots \psi_{Dk})^{\top}$ is the kth column of $\boldsymbol{\psi} = \mathbb{E}[\mathbf{Z}];$

$$\mathbb{E}_p[\mathbf{w}_{mn}^{\top}\mathbf{U}\mathbf{w}_{mn}] = 2\sum_{j < k} \phi_{mn}^j \phi_{mn}^k \mathbf{U}_{jk} + \sum_k \mathbf{U}_{kk} (K\sigma_{mn}^2 + \Phi_{mn}^{\top}\Phi_{mn});$$

and $\mathbf{U} \stackrel{\text{def}}{=} \mathbb{E}[\mathbf{Z}^{\top}\mathbf{Z}]$ is a $K \times K$ matrix, whose element is

$$\mathbf{U}_{ij} = \begin{cases} \sum_{d} \psi_{di}, & \text{if } i = j \\ \sum_{d} \psi_{di} \psi_{dj}, & \text{otherwise} \end{cases}$$

For the KL-divergence term, we have $\operatorname{KL}(p(\mathcal{M}) \| \pi(\mathcal{M})) = \operatorname{KL}(p(\boldsymbol{\nu}) \| \pi(\boldsymbol{\nu})) + \operatorname{KL}(p(\mathbf{W}) \| \pi(\mathbf{W})) + \operatorname{KL}(p(\mathbf{Z}) \| \pi(\mathbf{Z})) + \operatorname{KL}(p(\boldsymbol{\eta}) \| \pi(\boldsymbol{\eta}))$, where the individual terms are

$$\operatorname{KL}(p(\boldsymbol{\nu}) \| \pi(\boldsymbol{\nu})) = \sum_{k=1}^{K} \left((\gamma_{k1} - \alpha)(\psi(\gamma_{k1}) - \psi(\gamma_{k1} + \gamma_{k2})) + (\gamma_{k2} - 1)(\psi(\gamma_{k2}) - \psi(\gamma_{k1} + \gamma_{k2})) - \log \frac{\Gamma(\gamma_{k1})\Gamma(\gamma_{k2})}{\Gamma(\gamma_{k1} + \gamma_{k2})} \right) - K \log \alpha,$$

$$\operatorname{KL}(p(\mathbf{Z}) \| \pi(\mathbf{Z})) = \sum_{dk} \left(-\psi_{dk} \sum_{j=1}^{k} \mathbb{E}_p[\log \nu_j] - (1 - \psi_{dk})\mathbb{E}_p[\log(1 - \prod_{j=1}^{k} \nu_j)] + \psi_{dk} \log \psi_{dk} + (1 - \psi_{dk}) \log(1 - \psi_{dk}) \right)$$

$$\operatorname{KL}(p(\mathbf{W}) \| \pi(\mathbf{W})) = \sum_{mn} \Big(\frac{K \sigma_{mn}^2 + \Phi_{mn}^\top \Phi_{mn}}{2 \sigma_{m0}^2} - \frac{K (1 + \log \frac{\sigma_{mn}}{\sigma_{m0}^2})}{2} \Big).$$

where $\psi(\cdot)$ is the digamma function and $\mathbb{E}_p[\log v_j] = \psi(\gamma_{j1}) - \psi(\gamma_{j1} + \gamma_{j2})$. For $\mathrm{KL}(p(\eta) || \pi(\eta))$, we do not need to write it explicitly, as we shall see. Finally, the effective discriminant function is

$$f_m(\mathbf{x}_{mn}; p(\mathbf{Z}, \boldsymbol{\eta})) = \boldsymbol{\eta}_m^\top \boldsymbol{\psi}^\top \mathbf{x}_{mn} = \sum_{k=1}^K \mathbb{E}_p[\eta_{mk}] \boldsymbol{\psi}_{.k}^\top \mathbf{x}_{mn}.$$

All the above terms can be easily computed, except the term $\mathbb{E}_p[\log(1-\prod_{j=1}^k \nu_j)]$. Here, we adopt the multivariate lower bound [9]

$$\mathbb{E}_{p}[\log(1-\prod_{j=1}^{k}\nu_{j})] \ge \sum_{m=1}^{k}q_{km}\psi(\gamma_{m2}) + \sum_{m=1}^{k-1}(\sum_{n=m+1}^{k}q_{kn})\psi(\gamma_{m1}) - \sum_{m=1}^{k}(\sum_{n=m}^{k}q_{kn})\psi(\gamma_{m1}+\gamma_{m2}) + \mathcal{H}(q_{k.})$$

where the variational parameters $q_{k.} = (q_{k1} \cdots q_{kk})^{\top}$ belong to the k-simplex, and $\mathcal{H}(q_{k.})$ is the entropy of $q_{k.}$. The tightest lower bound is achieved by setting $q_{k.}$ to be the optimum value

$$q_{km} = \frac{1}{Z_k} \exp\left(\psi(\gamma_{m2}) + \sum_{n=1}^{m-1} \psi(\gamma_{n1}) - \sum_{n=1}^m \psi(\gamma_{n1} + \gamma_{n2})\right),\tag{17}$$

where Z_k is a normalization factor to make q_k be a distribution. We denote the tightest lower bound by \mathcal{L}_k^{ν} . Replacing the term $\mathbb{E}_p[\log(1-\prod_{j=1}^k \nu_j)]$ with its lower bound \mathcal{L}_k^{ν} , we can have an upper bound of $\mathrm{KL}(p(\mathcal{M}) \| \pi(\mathcal{M}))$ and we denote this upper bound by $\mathcal{L}(p)$.

Algorithm 1 Inference Algorithm of MT-iLSVM

1: Input: data $\mathcal{D} = \{(\mathbf{x}_{mn}, y_{mn})\}_{m,n \in \mathcal{I}_{tr}^m} \cup \{\mathbf{x}_{mn}\}_{m,n \in \mathcal{I}_{tr}^m}$, constants α and C

- 2: **Output:** distributions $p(\boldsymbol{\nu})$, $p(\mathbf{Z})$, $p(\mathbf{W})$, $p(\boldsymbol{\eta})$ and hyper-parameters σ_{m0}^2 and λ_{mn}^2 3: Initialize $\gamma_{k1} = \alpha$, $\gamma_{k2} = 1$, $\psi_{dk} = 0.5 + \epsilon$, where $\epsilon \sim \mathcal{N}(0, 0.001)$, $\Phi_{mn} = 0$, $\sigma_{mn}^2 = \sigma_{m0}^2 = 1$, $\mu_m = 0$, λ_{mn}^2 is computed from \mathcal{D} .

4: repeat

- repeat 5:
- update $(\gamma_{k1}, \gamma_{k2})$ using Eq. (19), $\forall 1 \le k \le K$; 6:
- update ϕ_{mn}^{k} and σ_{mn}^{2} using Eq. (18), $\forall m, \forall n, \forall 1 \leq k \leq K$; update ψ_{dk} using Eq. (20), $\forall 1 \leq d \leq D, \forall 1 \leq k \leq K$; 7:
- 8:
- until relative change of L is less than $\overline{\tau}$ (e.g., $1e^{-3}$) or iteration number is T (e.g., 10) 9:
- for m = 1 to M do 10:
- solve the dual problem (21) using a binary SVM learner. 11:
- 12: end for
- 13: update the hyper-parameters σ_{m0}^2 using Eq. (22) and λ_{mn}^2 using Eq. (23). (*Optional*) 14: **until** relative change of L is less than τ' (e.g., $1e^{-4}$) or iteration number is T' (e.g., 20)

With the above terms and the upper bound $\mathcal{L}(p)$, we use the Lagrangian method with the Lagrangian multipliers ω , one for each margin constraint, and u for the nonnegativity constraint of $\boldsymbol{\xi}$. We have the Lagrangian functional

$$L(p,\boldsymbol{\xi},\boldsymbol{\omega},\mathbf{u}) = \mathcal{L}(p) - \sum_{mn} L_{mn}(p) - \sum_{m,n \in \mathcal{I}_{u}^{m}} \omega_{mn} \Big(y_{mn} (\mathbb{E}_{p}[\boldsymbol{\eta}_{m}]^{\top} \boldsymbol{\psi}^{\top} \mathbf{x}_{mn}) - 1 + \xi_{mn} \Big) - \mathbf{u}^{\top} \boldsymbol{\xi}.$$

Then, the inference procedure iteratively solves the following steps:

Infer $p(\nu)$, $p(\mathbf{Z})$ and $p(\mathbf{W})$: For $p(\mathbf{W})$, since both the prior $\pi(\mathbf{W})$ and $p(\mathbf{W})$ are Gaussian, we can easily derive the update rules, similar as in Gaussian mixture models

$$\phi_{mn}^{k} = \frac{\sum_{d} x_{mn}^{d} \psi_{dk} - \sum_{j \neq k} \phi_{mn}^{j} \mathbf{U}_{kj}}{\lambda_{mn}^{2}} \left(\frac{1}{\sigma_{m0}^{2}} + \frac{\sum_{d} \psi_{dk}}{\lambda_{mn}^{2}}\right)^{-1}$$
(18)
$$\sigma_{mn}^{2} = \left(\frac{1}{\sigma_{m0}^{2}} + \frac{1}{K} \sum_{k} \frac{\mathbf{U}_{kk}}{\lambda_{mn}^{2}}\right)^{-1}$$

For $p(\nu)$, we have the update rules similar as in [9], that is,

$$\gamma_{k1} = \alpha + \sum_{m=k}^{K} \sum_{d=1}^{D} \psi_{dm} + \sum_{m=k+1}^{K} (D - \sum_{d=1}^{D} \psi_{dm}) (\sum_{i=k+1}^{m} q_{mi})$$
(19)
$$\gamma_{k2} = 1 + \sum_{m=k}^{K} (D - \sum_{d=1}^{D} \psi_{dm}) q_{mk}.$$

For $p(\mathbf{Z})$, we have the mean-field update equation as

$$\psi_{dk} = \frac{1}{1 + e^{-\vartheta_{dk}}},\tag{20}$$

where

$$\vartheta_{dk} = \sum_{j=1}^{k} \mathbb{E}_{p}[\log v_{j}] - \mathcal{L}_{k}^{\nu} - \sum_{mn} \frac{1}{2\lambda_{mn}^{2}} \Big((K\sigma_{mn}^{2} + (\phi_{mn}^{k})^{2}) - 2x_{mn}^{d}\phi_{mn}^{k} + 2\sum_{j\neq k} \phi_{mn}^{j}\phi_{mn}^{k}\psi_{dj} \Big) + \sum_{m,n\in\mathcal{I}_{w}^{m}} y_{mn}\mathbb{E}_{p}[\eta_{mk}]x_{mn}^{d}.$$

Infer $p(\eta)$ and solve for ω and ξ : We can optimize L to solve for $q(\eta)$, which is

$$p(\boldsymbol{\eta}) \propto \pi(\boldsymbol{\eta}) \exp\left\{\sum_{m,n \in \mathcal{I}_{\mathrm{tr}}^m} y_{mn} \omega_{mn} \boldsymbol{\eta}_m^\top \boldsymbol{\psi}^\top \mathbf{x}_{mn}\right\} = \prod_{m=1}^M \pi(\boldsymbol{\eta}_m) \exp\left\{\boldsymbol{\eta}_m^\top \left(\sum_{n \in \mathcal{I}_{\mathrm{tr}}^m} y_{mn} \omega_{mn} \boldsymbol{\psi}^\top \mathbf{x}_{mn}\right)\right\}.$$

Therefore, we can see that although we did not assume $p(\eta)$ is factorized, we can get the induced factorization form $p(\eta) = \prod_m p(\eta_m)$, where

$$p(\eta_m) \propto \pi(\boldsymbol{\eta}_m) \exp\left\{\boldsymbol{\eta}_m^{\top} \left(\sum_{n \in \mathcal{I}_w^m} y_{mn} \omega_{mn} \boldsymbol{\psi}^{\top} \mathbf{x}_{mn}\right)\right\}.$$

Here, we assume $\pi(\eta_m)$ is standard normal. Then, we have $p(\eta_m) = \mathcal{N}(\eta_m | \mu_m, I)$, where

$$\boldsymbol{\mu}_m = \sum_{n \in \mathcal{I}_{\mathrm{tr}}^m} y_{mn} \omega_{mn} \boldsymbol{\psi}^\top \mathbf{x}_{mn}$$

Substituting the solution of $p(\eta)$ into the Lagrangian functional, we get the M independent dual problems

$$\max_{\boldsymbol{\omega}_m} -\frac{1}{2}\boldsymbol{\mu}_m^{\top}\boldsymbol{\mu}_m + \sum_{n \in \mathcal{I}_{\mathrm{tr}}^m} \omega_{mn} \quad \text{s.t.}: \ 0 \le \omega_{mn} \le 1, \forall n \in \mathcal{I}_{\mathrm{tr}}^m,$$
(21)

which (and its primal form) can be efficiently solved with a binary SVM solver, such as SVM-light.

As we have stated, the hyperparameters σ_0^2 and λ_{mn}^2 can be set a priori or estimated from the data. The empirical estimation can be easily done with closed form solutions. For MT-iLSVM, we have

$$\sigma_{m0}^2 = \frac{\sum_{n=1}^{N_m} (K \sigma_{mn}^2 + \Phi_{mn}^\top \Phi_{mn})}{K N_m}$$
(22)

$$\lambda_{mn}^{2} = \frac{\mathbf{x}_{mn}^{\top} \mathbf{x}_{mn} - 2\mathbf{x}_{mn}^{\top} \mathbb{E}_{p}[\mathbf{Z}\mathbf{w}_{mn}] + \mathbb{E}_{p}[\mathbf{w}_{mn}^{\top} \mathbf{U}\mathbf{w}_{mn}]}{D}.$$
(23)

Appendix A.2: Inference for Infinite Latent SVM

In this section, we develop the inference algorithm for iLSVM based on the stick-breaking construction of the IBP prior. The algorithm is outlined in Alg. 2 and detailed below.

Similar as in the inference for MT-iLSVM, we make the additional constraint about the feasible distribution

$$p(\boldsymbol{\nu}, \mathbf{W}, \mathbf{Z}, \boldsymbol{\eta}) = p(\boldsymbol{\eta}) p(\mathbf{W} | \Phi, \Sigma) \prod_{n} \left(\prod_{k=1}^{K} p(z_{nk} | \psi_{nk}) \right) \prod_{k=1}^{K} p(\nu_{k} | \boldsymbol{\gamma}_{k}),$$

where K is the truncation level; $p(\mathbf{W}|\Phi, \Sigma) = \prod_k \mathcal{N}(\mathbf{W}_{.k}|\Phi_{.k}, \sigma_k^2 I); \quad p(z_{nk}|\phi_{nk}) = Bernoulli(\phi_{nk});$ and $p(\nu_k|\gamma_k) = Beta(\gamma_{k1}, \gamma_{k2})$. Then, we solve the constrained problem using Lagrangian methods with Lagrangian multipliers being $\boldsymbol{\omega}$, one for each large-margin constraint, and \mathbf{u} for the nonnegativity constraints of $\boldsymbol{\xi}$. Similarly, let $L_n(p) \stackrel{\text{def}}{=} \mathbb{E}_p[\log p(\mathbf{x}_n | \mathbf{z}_n, \mathbf{W})]$. We have

$$L_n(p) = -\frac{\mathbf{x}_n^\top \mathbf{x}_n - 2\mathbf{x}_n^\top \Phi \mathbb{E}_p[\mathbf{z}_n]^\top + \mathbb{E}_p[\mathbf{z}_n \mathbf{A} \mathbf{z}_n^\top]}{2\sigma_{n0}^2} - \frac{D\log(2\pi\sigma_{n0}^2)}{2},$$
(24)

where $\mathbf{A} \stackrel{\text{def}}{=} \mathbb{E}_p[\mathbf{W}^\top \mathbf{W}]$ is a $K \times K$ matrix; $\mathbf{x}_n^\top \Phi \mathbb{E}_p[\mathbf{z}_n]^\top = 2 \sum_k \psi_{nk}(\mathbf{x}_n^\top \Phi_{\cdot k})$; and $\mathbb{E}_p[\mathbf{z}_n \mathbf{A} \mathbf{z}_n^\top] = 2 \sum_{j < k} \psi_{nj} \psi_{nk} \mathbf{A}_{jk} + \sum_k \psi_{nk}(D\sigma_k^2 + \mathbf{A}_{kk}).$

The effective discriminant function is $f(y, \mathbf{x}_n) = \sum_k \mathbb{E}_p[\eta_y^k]\psi_{nk}$. Again, for computational tractability, we need the lower bound \mathcal{L}_k^{ν} of the term $\mathbb{E}_p[\log(1-\prod_{j=1}^k v_j)]$. Using this lower bound, we can get an upper bound of the KL-divergence term, and we denote the Lagrangian functional by $L(p, \boldsymbol{\xi}, \boldsymbol{\omega}, \mathbf{u})$. Then, the inference procedure iteratively solves the following steps:

Infer $p(\nu)$, $p(\mathbf{Z})$ and $p(\mathbf{W})$: For $p(\mathbf{W})$, we have the update rules

$$\Phi_{.k} = \sum_{n} \frac{\psi_{nk}}{\sigma_{n0}^2} \left(\mathbf{x}_n - \sum_{j \neq k} \psi_{nj} \Phi_{.j} \right) \left(1 + \sum_{n} \frac{\psi_{nk}}{\sigma_{n0}^2} \right)^{-1}$$
(25)
$$\sigma_k^2 = \left(1 + \sum_{n} \frac{\psi_{nk}}{\sigma_{n0}^2} \right)^{-1}.$$

Algorithm 2 Inference Algorithm of iLSVM

- 1: **Input:** data $\mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n \in \mathcal{I}_{tr}} \cup \{\mathbf{x}_n\}_{n \in \mathcal{I}_{tst}}$, constants α and C2: **Output:** distributions $p(\boldsymbol{\nu}), p(\mathbf{Z}), p(\mathbf{W}), p(\boldsymbol{\eta})$ and hyper-parameters σ_0^2 and σ_{n0}^2
- 3: Initialize $\gamma_{k1} = \alpha$, $\gamma_{k2} = 1$, $\psi_{nk} = 0.5 + \epsilon$, where $\epsilon \sim \mathcal{N}(0, 0.001)$, $\Phi_{\cdot k} = 0$, $\sigma_k^2 = \sigma_0^2 = 1$, $\mu = 0$, σ_{n0}^2 is computed from \mathcal{D} .

4: repeat

- 5: repeat
- update $(\gamma_{k1}, \gamma_{k2})$ using Eq. (26), $\forall 1 \leq k \leq K$; 6:
- update $\Phi_{.k}$ and σ_k^2 using Eq. (25), $\forall 1 \le k \le K$; 7:
- update ψ_{nk} using Eq. (27), $\forall n \in \mathcal{I}_{tr}, \forall 1 \leq k \leq K$; 8:
- update ψ_{nk} using Eq. (27), but ϑ_{nk} doesn't have the last term, $\forall n \in \mathcal{I}_{tst}, \forall 1 \le k \le K$; until relative change of L is less than τ (e.g., $1e^{-3}$) or iteration number is T (e.g., 10) solve the dual problem (28) (or its primal form) using a multi-class SVM learner. 9:
- 10:
- 11:
- update the hyper-parameters σ_0^2 using Eq. (29) and σ_{n0}^2 using Eq. (30). (Optional) 12:

13: until relative change of L is less than τ' (e.g., $1e^{-4}$) or iteration number is T' (e.g., 20)

For $p(\boldsymbol{\nu})$, we have the update rules similar as in [9], that is,

$$\gamma_{k1} = \alpha + \sum_{m=k}^{K} \sum_{n=1}^{N} \psi_{nm} + \sum_{m=k+1}^{K} (N - \sum_{n=1}^{N} \psi_{nm}) (\sum_{i=k+1}^{m} q_{mi})$$
(26)
$$\gamma_{k2} = 1 + \sum_{m=k}^{K} (N - \sum_{n=1}^{N} \psi_{nm}) q_{mk},$$

where q_{k} is computed in the same way as in Eq. (17). For $p(\mathbf{Z})$, the mean-field update equation for ψ is

$$\psi_{nk} = \frac{1}{1 + e^{-\vartheta_{nk}}},\tag{27}$$

where

$$\vartheta_{nk} = \sum_{j=1}^{k} \mathbb{E}_p[\log v_j] - \mathcal{L}_k^{\nu}(p) - \frac{1}{2\sigma_{n0}^2} (D\sigma_k^2 + \Phi_{.k}^{\top} \Phi_{.k}) + \frac{1}{\sigma_{n0}^2} \Phi_{.k}^{\top} \Big(\mathbf{x}_n - \sum_{j \neq k} \psi_{nj} \Phi_{.j} \Big) + \sum_{y} \omega_n^y \mathbb{E}_p[\eta_{y_n}^k - \eta_y^k].$$

For testing data, ϑ_{nk} does not have the last term because of the absence of large-margin constraints.

Infer $p(\eta)$ and solve for $(\xi, \omega, \mathbf{u})$: We can optimize L to solve for $q(\eta)$, which is

$$p(oldsymbol{\eta}) \propto \pi(oldsymbol{\eta}) \exp\left\{oldsymbol{\eta}^{ op}(\sum_{n \in \mathcal{I}_{\mathrm{tr}}} \sum_{y} \omega_n^y \mathbb{E}_p[\mathbf{g}(y_n, \mathbf{x}_n, \mathbf{z}_n) - \mathbf{g}(y, \mathbf{x}_n, \mathbf{z}_n)])
ight\}$$

For the standard normal prior $\pi(\eta)$, we have that $q(\eta)$ is also normal, with mean

$$\boldsymbol{\mu} = \sum_{n \in \mathcal{I}_{\mathrm{tr}}} \sum_{y} \omega_d^y \mathbb{E}_p[\mathbf{g}(y_n, \mathbf{x}_n, \mathbf{z}_n) - \mathbf{g}(y, \mathbf{x}_n, \mathbf{z}_n)]$$

and identity covariance matrix. Substituting the solution of $p(\eta)$ into the Lagrangian functional, we get the dual problem

$$\max_{\boldsymbol{\omega}} -\frac{1}{2}\boldsymbol{\mu}^{\top}\boldsymbol{\mu} + \sum_{n \in \mathcal{I}_{\mathrm{tr}}} \sum_{y} \omega_{n}^{y} \quad \text{s.t.}: \ 0 \le \sum_{y} \omega_{n}^{y} \le C, \forall n \in \mathcal{I}_{\mathrm{tr}},$$
(28)

which (and its primal form) can be efficiently solved with a multi-class SVM solver.

Similar as in MT-iLSVM, the hyperparameters σ_0^2 and σ_{n0}^2 can be set a priori or estimated from the data. The empirical estimation can be easily done with closed form solutions. For iLSVM, we have

$$\sigma_0^2 = \frac{\sum_{k=1}^{K} (D\sigma_k^2 + \Phi_{.k}^{\top} \Phi_k)}{KD}$$
(29)

$$\sigma_{n0}^{2} = \frac{\mathbf{x}_{n}^{\top} \mathbf{x}_{n} - 2\mathbf{x}_{n}^{\top} \Phi \mathbb{E}_{p}[\mathbf{z}_{n}]^{\top} + \mathbb{E}_{p}[\mathbf{z}_{n} \mathbf{A} \mathbf{z}_{n}^{\top}]}{D}.$$
(30)