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Abstract
In this paper, we propose the first exact algorithm for minimizing the difference of two
submodular functions (D.S.), i.e., the discrete version of the D.C. programming problem.
The developed algorithm is a branch-and-bound-based algorithm which responds to the
structure of this problem through the relationship between submodularity and convexity.
The D.S. programming problem covers a broad range of applications in machine learn-
ing. In fact, this generalizes any set-function optimization. We empirically investigate
the performance of our algorithm, and illustrate the difference between exact and approx-
imate solutions respectively obtained by the proposed and existing algorithms in feature
selection and discriminative structure learning.

1 Introduction

Combinatorial optimization techniques have been actively applied to many machine learning appli-
cations, where submodularity often plays an important role to develop algorithms [10, 16, 27, 14,
15, 19, 1]. In fact, many fundamental problems in machine learning can be formulated as submoular
optimization. One of the important categories would be the D.S. programming problem, i.e., the
problem of minimizing the difference of two submodular functions. This is a natural formulation
of many machine learning problems, such as learning graph matching [3], discriminative structure
learning [21], feature selection [1] and energy minimization [24].

In this paper, we propose a prismatic algorithm for the D.S. programming problem, which is a
branch-and-bound-based algorithm responding to the specific structure of this problem. To the best
of our knowledge, this is the first exact algorithm to the D.S. programming problem (although there
exists an approximate algorithm for this problem [21]). As is well known, the branch-and-bound
method is one of the most successful frameworks in mathematical programming and has been in-
corporated into commercial softwares such as CPLEX [13, 12]. We develop the algorithm based
on the analogy with the D.C. programming problem through the continuous relaxation of solution
spaces and objective functions with the help of the Lovász extension [17, 11, 18]. The algorithm is
implemented as an iterative calculation of binary-integer linear programming (BILP).

Also, we discuss applications of the D.S. programming problem in machine learning and investi-
gate empirically the performance of our method and the difference between exact and approximate
solutions through feature selection and discriminative structure-learning problems.

The remainder of this paper is organized as follows. In Section 2, we give the formulation of the
D.S. programming problem and then describe its applications in machine learning. In Section 3,
we give an outline of the proposed algorithm for this problem. Then, in Section 4, we explain the
details of its basic operations. And finally, we give several empirical examples using artificial and
real-world datasets in Section 5, and conclude the paper in Section 6.

Preliminaries and Notation: A set function f is called submodular if f(A) + f(B) ≥ f(A ∪
B) + f(A∩B) for all A,B ⊆ N , where N = {1, · · · , n} [5, 7]. Throughout this paper, we denote
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by f̂ the Lovász extension of f , i.e., a continuous function f̂ : Rn → R defined by

f̂(p) =
∑m−1

j=1 (p̂j − p̂j+1)f(Uj) + p̂mf(Um),

where Uj = {i ∈ N : pi ≥ p̂j} and p̂1 > · · · > p̂m are the m distinct elements of p [17, 18]. Also,
we denote by IA ∈ {0, 1}n the characteristic vector of a subset A ⊆ N , i.e., IA =

∑
i∈A ei where

ei is the i-th unit vector. Note, through the definition of the characteristic vector, any subset A ⊆ N
has the one-to-one correspondence with the vertex of a n-dimensional cube D := {x ∈ Rn : 0 ≤
xi ≤ 1(i = 1, . . . , n)}. And, we denote by (A, t)(T ) all combinations of a real value plus subset
whose corresponding vectors (IA, t) are inside or on the surface of a polytope T ∈ Rn+1.

2 The D.S. Programming Problem and its Applications

Let f and g are submodular functions. In this paper, we address an exact algorithm to solve the D.S.
programming problem, i.e., the problem of minimizing the difference of two submodular functions:

min
A⊆N

f(A)− g(A). (1)

As is well known, any real-valued function whose second partial derivatives are continuous every-
where can be represented as the difference of two convex functions [12]. As well, the problem (1)
generalizes any set-function optimization problem. Problem (1) covers a broad range of applications
in machine learning [21, 24, 3, 1]. Here, we give a few examples.

Feature selection using structured-sparsity inducing norms: Sparse methods for supervised
learning, where we aim at finding good predictors from as few variables as possible, have attracted
much interests from machine learning community. This combinatorial problem is known to be a
submodular maximization problem with cardinality constraint for commonly used measures such as
least-squared errors [4, 14]. And as is well known, if we replace the cardinality function with its
convex envelope such as l1-norm, this can be turned into a convex optimization problem. Recently,
it is reported that submodular functions in place of the cardinality can give a wider family of poly-
hedral norms and may incorporate prior knowledge or structural constraints in sparse methods [1].
Then, the objective (that is supposed to be minimized) becomes the sum of a loss function (often,
supermodular) and submodular regularization terms.

Discriminative structure learning: It is reported that discriminatively structured Bayesian clas-
sifier often outperforms generatively structured one [21, 22]. One commonly used metric for dis-
criminative structure learning would be EAR (explaining away residual) [2]. EAR is defined as the
difference of the conditional mutual information between variables by class C and non-conditional
one, i.e., I(Xi;Xj |C) − I(Xi;Xj). In structure learning, we repeatedly try to find a subset in
variables that minimize this kind of measures. Since the (symmetric) mutual information is a sub-
modular function, obviously this problem leads the D.S. programming problem [21].

Energy minimization in computer vision: In computer vision, an image is often modeled with
a Markov random field, where each node represents a pixel. Let G = (V, E) be the undirected
graph, where a label xs ∈ L is assigned on each node. Then, many tasks in computer vision
can be naturally formulated in terms of energy minimization where the energy function has the
form: E(x) =

∑
p∈V θp(xp) +

∑
(p,q)∈E θ(xp,xq), where θp and θp,q are univariate and pairwise

potentials. In a pairwise potential for binarized energy (i.e., L = {0, 1}), submodularity is defined
as θpq(1, 1) + θpq(0, 0) ≥ θpq(1, 0) + θpq(0, 1) (see, for example, [26]). Based on this, any energy
function in computer vision can be written with a submodular function E1(x) and a supermodular
function E2(x) as E(x) = E1(x) + E2(x) (ex. [24]). Or, in case of binarized energy, even if such
explicit decomposition is not known, a non-unique decomposition to submodular and supermodular
functions can be always given [25].

3 Prismatic Algorithm for the D.S. Programming Problem

By introducing an additional variable t(∈ R), Problem (1) can be converted into the equivalent
problem with a supermodular objective function and a submodular feasible set, i.e.,

min
A⊆N,t∈R

t− g(A) s.t. f(A)− t ≤ 0. (2)
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Figure 1: Illustration of the pris-
matic algorithm.

Obviously, if (A∗, t∗) is an optimal solution of Prob-
lem (2), then A∗ is an optimal solution of Problem (1)
and t∗ = f(A∗). The proposed algorithm is a realization
of the branch-and-bound scheme which responds to this
specific structure of the problem.

To this end, we first define a prism T (S) ⊂ Rn+1 by
T = {(x, t) ∈ Rn × R : x ∈ S},

where S is an n-simplex. S is obtained from the n-
dimensional cube D at the initial iteration (as described
in Section 4.1), or by the subdivision operation described
in the later part of this section (and the detail will be de-
scribed in Section 4.2). The prism T has n+1 edges that
are vertical lines (i.e., lines parallel to the t-axis) which
pass through the n+ 1 vertices of S, respectively [11].

Our algorithm is an iterative procedure which mainly consists of two parts; branching and bounding,
as well as other branch-and-bound frameworks [13]. In branching, subproblems are constructed by
dividing the feasible region of a parent problem. And in bounding, we judge whether an optimal
solution exists in the region of a subproblem and its descendants by calculating an upper bound of
the subproblem and comparing it with an lower bound of the original problem. Some more details
for branching and bounding are described as follows.

Branching: The branching operation in our method is carried out using the property of a simplex.
That is, since, in a n-simplex, any r + 1 vertices are not on a r − 1-dimensional hyperplane for
r ≤ n, any n-simplex can be divided as S =

∪p
i=1 Si, where p ≥ 2 and Si are n-simplices such

that each pair of simplices Si, Sj(i ̸= j) intersects at most in common boundary points (the way of
constructing such partition is explained in Section 4.2). Then, T =

∪p
i=1 Ti, where Ti = {(x, t) ∈

Rn × R : x ∈ Si}, is a natural prismatic partition of T induced by the above simplical partition.

Bounding: For the bounding operation on Sk (resp., Tk) at the iteration k, we consider a polyhe-
dral convex set Pk such that Pk ⊃ D̃, where D̃ = {(x, t) ∈ Rn × R : x ∈ D, f̂(x) ≤ t} is the
region corresponding to the feasible set of Problem (2). At the first iteration, such P is obtained as

P0 = {(x, t) ∈ Rn × R : x ∈ S, t ≥ t̃},
where t̃ is a real number satisfying t̃ ≤ min{f(A) : A ⊆ N}. Here, t̃ can be determined by using
some existing submodular minimization solver [23, 8]. Or, at later iterations, more refined Pk, such
that P0 ⊃ P1 ⊃ · · · ⊃ D̃, is constructed as described in Section 4.4.

As described in Section 4.3, a lower bound β(Tk) of t − g(A) on the current prism Tk can be
calculated through the binary-integer linear programming (BILP) (or the linear programming (LP))
using Pk, obtained as described above. Let α be the lowest function value (i.e., an upper bound of
t− g(A) on D̃) found so far. Then, if β(Tk) ≥ α, we can conclude that there is no feasible solution
which gives a function value better than α and can remove Tk without loss of optimality.

The pseudo-code of the proposed algorithm is described in Algorithm 1. In the following section,
we explain the details of the operations involved in this algorithm.

4 Basic Operations

Obviously, the procedure described in Section 3 involves the following basic operations:
1. Construction of the first prism: A prism needs to be constructed from a hypercube at first,
2. Subdivision process: A prism is divided into a finite number of sub-prisms at each iteration,
3. Bound estimation: For each prism generated throughout the algorithm, a lower bound for the

objective function t−g(A) over the part of the feasible set contained in this prism is computed,
4. Construction of cutting planes: Throughout the algorithm, a sequence of polyhedral convex sets

P0, P1, · · · is constructed such that P0 ⊃ P1 ⊃ · · · ⊃ D̃. Each set Pj is generated by a cutting
plane to cut off a part of Pj−1, and

5. Deletion of non-optimal prisms: At each iteration, we try to delete prisms that contain no
feasible solution better than the one obtained so far.
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Construct a simplex S0 ⊃ D, its corresponding prism T0 and a polyhedral convex set P0 ⊃ D̃.1
Let α0 be the best objective function value known in advance. Then, solve the BILP (5)2

corresponding to α0 and T0, and let β0 = β(T0, P0, α0) and (Ā0, t̄0) be the point satisfying
β0 = t̄0 − g(Ā0).
SetR0 ← T0.3
whileRk ̸= ∅4

Select a prism T ∗
k ∈ Rk satisfying βk = β(T ∗

k ), (v̄
k, t̄k) ∈ T ∗

k .5

if (v̄k, t̄k) ∈ D̃ then6
Set Pk+1 = Pk.7

else8
Construct lk(x, t) according to (8), and set Pk+1 = {(x, t) ∈ Pk : lk(x, t) ≤ 0}.9

Subdivide T ∗
k = T (S∗

k) into a finite number of subprisms Tk,j(j∈Jk) (cf. Section 4.2).10
For each j ∈ Jk, solve the BILP (5) with respect to Tk,j , Pk+1 and αk.11
Delete all Tk,j(j∈Jk) satisfying (DR1) or (DR2). LetMk denote the collection of12
remaining prisms Tk,j(j ∈ Jk), and for each T ∈Mk set

β(T ) = max{β(T ∗
k ), β(T, Pk+1, αk)}.

Let Fk be the set of new feasible points detected while solving BILP in Step 11, and set13

αk+1 = min{αk,min{t− g(A) : (A, t) ∈ Fk}}.
Delete all T∈Mk satisfying β(T )≥αk+1 and letRk beRk−1 \ Tk ∈Mk.14
Set βk+1 ← min{β(T ) : T ∈Mk} and k ← k + 1.15

Algorithm 1: Pseudo-code of the prismatic algorithm for the D.S programming problem.

4.1 Construction of the first prism

The initial simplex S0 ⊃ D (which yields the initial prism T0 ⊃ D̃) can be constructed as follows.
Now, let v and Av be a vertex of D and its corresponding subset in N , respectively, i.e., v =∑

i∈Av
ei. Then, the initial simplex S0 ⊃ D can be constructed by

S0 = {x ∈ Rn : xi ≤ 1(i ∈ Av), xi ≥ 0(i ∈ N \Av),a
Tx ≤ γ},

where a =
∑

i∈N\Av
ei −

∑
i∈Av

ei and γ = |N \ Av|. The n+ 1 vertices of S0 are v and the n

points where the hyperplane {x ∈ Rn : aTx = γ} intersects the edges of the cone {x ∈ Rn : xi ≤
1(i ∈ Av), xi ≥ 0(i ∈ N \Av)}. Note this is just an option and any n-simplex S ⊃ D is available.

4.2 Sub-division of a prism

Let Sk and Tk be the simplex and prism at k-th iteration in the algorithm, respectively. We denote Sk

as Sk = [vi
k, . . . ,v

n+1
k ] := conv{v1

k, . . . ,v
n+1
k } which is defined as the convex hull of its vertices

v1
k, . . . ,v

n+1
k . Then, any r ∈ Sk can be represented as

r =
∑n+1

i=1 λiv
i
k,

∑n+1
i=1 λi = 1, λi ≥ 0 (i = 1, . . . , n+ 1).

Suppose that r ̸= vi
k (i = 1, . . . , n + 1). For each i satisfying λi > 0, let Si

k be the subsimplex of
Sk defined by

Si
k = [v1

k, . . . ,v
i−1
k , r,vi+1

k , . . . ,vn+1
k ]. (3)

Then, the collection {Si
k : λi > 0} defines a partition of Sk, i.e., we have∪
λi>0S

i
k = Sk, int Si

k ∩ int Sj
k = ∅ for i ̸= j [12].

In a natural way, the prisms T (Si
k) generated by the simplices Si

k defined in Eq. (3) form a partition
of Tk. This subdivision process of prisms is exhaustive, i.e., for every nested (decreasing) sequence
of prisms {Tq} generated by this process, we have

∩∞
q=0 Tq = τ , where τ is a line perpendicular

to Rn (a vertical line) [11]. Although several subdivision process can be applied, we use a classical
bisection one, i.e., each simplex is divided into subsimplices by choosing in Eq. (3) as

r = (vi1
k + vi2

k )/2,

where ∥vi1
k − vi2

k ∥ = max{∥vi
k − vj

k∥ : i, j ∈ {0, . . . , n}, i ̸= j} (see Figure 1).
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4.3 Lower bounds

Again, let Sk and Tk be the simplex and prism at k-th iteration in the algorithm, respectively. And,
let α be an upper bound of t − g(A), which is the smallest value of t − g(A) attained at a feasible
point known so far in the algorithm. Moreover, let Pk be a polyhedral convex set which contains D̃
and be represented as

Pk = {(x, t) ∈ Rn × R : Akx+ akt ≤ bk}, (4)
where Ak is a real (m×n)-matrix and ak, bk ∈ Rm.1 Now, a lower bound β(Tk, Pk, α) of t−g(A)

over Tk ∩ D̃ can be computed as follows.

First, let vi
k (i = 1, . . . , n+ 1) denote the vertices of Sk, and define I(Sk) = {i ∈ {1, . . . , n+ 1} :

vi
k ∈ Bn} and

µ =

{
min{α,min{f̂(vi

k)− ĝ(vi
k) : i ∈ I(S)}}, if I(S) ̸= ∅,

α, if I(S) = ∅.

For each i = 1, . . . , n + 1, consider the point (vi
k, t

i
k) where the edge of Tk passing through vi

k
intersects the level set {(x, t) : t− ĝ(x) = µ}, i.e.,

tik = ĝ(vi
k) + µ (i = 1, . . . , n+ 1).

Then, let us denote the uniquely defined hyperplane through the points (vi
k, t

i
k) by H = {(x, t) ∈

Rn×R : pTx−t = γ}, where p ∈ Rn and γ ∈ R. Consider the upper and lower halfspace generated
by H , i.e., H+ = {(x, t) ∈ Rn ×R : pTx− t ≤ γ} and H− = {(x, t) ∈ Rn ×R : pTx− t ≥ γ}.
If Tk ∩ D̃ ⊆ H+, then we see from the supermodularity of g(A) (the concavity of ĝ(x)) that

min{t− g(A) : (A, t) ∈ (A, t)(Tk ∩ D̃)} ≥ min{t− g(A) : (A, t) ∈ (A, t)(Tk ∩H+)}
≥ min{t− ĝ(x) : (x, t) ∈ Tk ∩H+}
= tik − ĝ(xi

k)(i = 1, . . . , n+ 1) = µ.

Otherwise, we shift the hyperplane H (downward with respect to t) until it reaches a point z =
(x∗, t∗) (∈ Tk ∩ Pk ∩ H−,x

∗ ∈ Bn) ((x∗, t∗) is a point with the largest distance to H and the
corresponding pair (A, t) (since x∗ ∈ Bn) is in (A, t)(Tk ∩ Pk ∩H−)). Let H̄ denote the resulting
supporting hyperplane, and denote by H̄+ the upper halfspace generated by H̄ . Moreover, for each
i = 1, . . . , n + 1, let zi = (vi

k, t̄
i
k) be the point where the edge of T passing through vi

k intersects
H̄ . Then, it follows (A, t)(Tk ∩ D̃) ⊂ (A, t)(Tk ∩ Pk) ⊂ (A, t)(Tk ∩ H̄+), and hence

min{t− g(A) : (A, t) ∈ (A, t)(Tk ∩ D̃)} > min{t− g(A) : (A, t) ∈ (A, t)(Tk ∩ H̄+)}
= min{t̄ik − ĝ(vi

k) : i = 1, . . . , n+ 1}.

Now, the above consideration leads to the following BILP in (λ,x, t):

max
λ,x,t

(∑n+1
i=1 tiλi − t

)
s.t. Akx+ akt ≤ bk, x =

∑n+1
i=1 λiv

i
k, x ∈ Bn,∑n+1

i=1 λi = 1, λi ≥ 0 (i = 1, . . . , n+ 1),

(5)

where A, a and b are given in Eq. (4).

Proposition 1. (a) If the system (5) has no solution, then intersection (A, t)(Tk ∩ D̃) is empty.
(b) Otherwise, let (λ∗,x∗, t∗) be an optimal solution of BILP (5) and c∗ =

∑n+1
i=1 tiλ

∗
i − t∗ its

optimal value, respectively. Then, the following statements hold:
(b1) If c∗ ≤ 0, then (A, t)(Tk ∩ D̃) ⊂ (A, t)(H+).
(b2) If c∗ > 0, then z = (

∑n+1
i=1 λiv

i
k, t

∗
k), z

i = (vi
k, t̄

i
k) = (vi

k, t
i
k − c∗) and t̄ik − ĝ(vi

k) =
µ− c∗ (i = 1, . . . , n+ 1).

Proof. First, we prove part (a). Since every point in Sk is uniquely representable as x =
∑n+1

i=1 λiv
i,

we see from Eq. (4) that the set (A, t)(Tk ∩ Pk) coincide with the feasible set of problem (5).
Therefore, if the system (5) has no solution, then (A, t)(Tk∩Pk) = ∅, and hence (A, t)(Tk∩D̃) = ∅
(because D̃ ⊂ Pk). Next, we move to part (b). Since the equation of H is pTx − t = γ, it follows

1Note that Pk is updated at each iteration, which does not depend on Sk, as described in Section 4.4.
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that determining the hyperplane H̄ and the point z amounts to solving the binary integer linear
programming problem:

max pTx− t s.t. (x, t) ∈ Tk ∩ Pk, x ∈ Bn. (6)

Here, we note that the objective of the above can be represented as

pTx− t = pT
(∑n+1

i=1 λiv
i
k

)
− t =

∑n+1
i=1 λip

Tvi
k − t.

On the other hand, since (vi
k, t

i
k) ∈ H , we have pTvi

k − tik = γ (i = 1, . . . , n+ 1), and hence

pTx− t =
∑n+1

i=1 λi(γ + tik)− t =
∑n+1

i=1 t
i
kλi − t+ γ.

Thus, the two BILPs (5) and (6) are equivalent. And, if γ∗ denotes the optimal objective function
value in Eq. (6), then γ∗ = c∗ + γ. If γ∗ ≤ γ, then it follows from the definition of H+ that H̄ is
obtained by a parallel shift of H in the direction H+. Therefore, c∗ ≤ 0 implies (A, t)(Tk ∩ Pk) ⊂
(A, t)(H+), and hence (A, t)(Tk ∩ D̃) ⊂ (A, t)(H+).
Since H̄ = {(x, t) ∈ Rn × R : pTx − t = γ∗} and H = {(x, t) ∈ Rn × R : pTx − t = γ}
we see that for each intersection point (vi

k, t̄
i
k) (and (vi

k, t
i
k)) of the edge of Tk passing through vi

k

with H̄ (and H), we have pTvi
k − t̄ik = γ∗ and pTvi

k − tik = γ, respectively. This implies that
t̄ik = tik + γ − γ∗ = tik − c∗, and (using tik = ĝ(vi

k) + µ) that t̄ik = ĝ(vi
k) + µ− c∗.

From the above, we see that, in the case (b1), µ constitutes a lower bound of (t−g(A)) wheres, in the
case (b2), such a lower bound is given by min{t̄ik − ĝ(vi

k) : i = 1, . . . , n+ 1}. Thus, Proposition 1
provides the lower bound

βk(Tk, Pk, α) =

{
+∞, if BILP (5) has no feasible point,
µ, if c∗ ≤ 0,
µ− c∗ if c∗ > 0.

(7)

As stated in Section 4.5, Tk can be deleted from further consideration when βk =∞ or µ.

4.4 Outer approximation

The polyhedral convex set Pk ⊃ D̃ used in the preceding section is updated in each iteration, i.e.,
a sequence P0, P1, · · · is constructed such that P0 ⊃ P1 ⊃ · · · ⊃ D̃. The update from Pk to Pk+1

(k = 0, 1, . . .) is done in a way which is standard for pure outer approximation methods [12]. That
is, a certain linear inequality lk(x, t) ≤ 0 is added to the constraint set defining Pk, i.e., we set

Pk+1 = Pk ∩ {(x, t) ∈ Rn × R : lk(x, t) ≤ 0}.

The function lk(x, t) is constructed as follows. At iteration k, we have a lower bound βk of t −
g(A) as defined in Eq. (7), and a point (v̄k, t̄k) satisfying t̄k − ĝ(v̄k) = βk. We update the outer
approximation only in the case (v̄k, t̄k) /∈ D̃. Then, we can set

lk(x, t) = sTk [(x, t)− zk] + (f̂(x∗
k)− t∗k), (8)

where sk is a subgradient of f̂(x) − t at zk. The subgradient can be calculated as, for example,
stated in [9] (see also [7]).
Proposition 2. The hyperplane {(x, t) ∈ Rn ×R : lk(x, t) = 0} strictly separates zk from D̃, i.e.,
lk(zk) > 0, and lk(x, t) ≤ 0 for ∀(x, t) ∈ D̃.

Proof. Since we assume that zk /∈ D̃, we have lk(zk) = (f̂(x∗
k)− t∗k). And, the latter inequality is

an immediate consequence of the definition of a subgradient.

4.5 Deletion rules

At each iteration of the algorithm, we try to delete certain subprisms that contain no optimal solution.
To this end, we adopt the following two deletion rules:

(DR1) Delete Tk if BILP (5) has no feasible solution.
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Figure 2: Training errors, test errors and computational time versus λ for the prismatic algorithm
and the supermodular-sumodular procedure.

p n k exact(PRISM) SSP greedy lasso
120 150 5 1.8e-4 (192.6) 1.9e-4 (0.93) 1.8e-4 (0.45) 1.9e-4 (0.78)
120 150 10 2.0e-4 (262.7) 2.4e-4 (0.81) 2.3e-4 (0.56) 2.4e-4 (0.84)
120 150 20 7.3e-4 (339.2) 7.8e-4 (1.43) 8.3e-4 (0.59) 7.7e-4 (0.91)
120 150 40 1.7e-3 (467.6) 2.1e-3 (1.17) 2.9e-3 (0.63) 1.9e-3 (0.87)

Table 1: Normalized mean-square prediction errors of training and test data by the prismatic algo-
rithm, the supermodular-submodular procedure, the greedy algorithm and the lasso.

(DR2) Delete Tk if the optimal value c∗ of BILP (5) satisfies c∗ ≤ 0.

The feasibility of these rules can be seen from Proposition 1 as well as the D.C. programing prob-
lem [11]. That is, (DR1) follows from Proposition 1 that in this case Tk ∩ D̃ = ∅, i.e., the prism Tk

is infeasible, and (DR2) from Proposition 1 and from the definition of µ that the current best feasible
solution cannot be improved in T .

5 Experimental Results

We first provide illustrations of the proposed algorithm and its solution on toy examples from feature
selection in Section 5.1, and then apply the algorithm to an application of discriminative structure
learning using the UCI repository data in Section 5.2. The experiments below were run on a 2.8
GHz 64-bit workstation using Matlab and IBM ILOG CPLEX ver. 12.1.

5.1 Application to feature selection

We compared the performance and solutions by the proposed prismatic algorithm (PRISM), the
supermodular-submodular procedure (SSP) [21], the greedy method and the LASSO. To this end,
we generated data as follows: Given p, n and k, the design matrix X ∈ Rn×p is a matrix of i.i.d.
Gaussian components. A feature set J of cardinality k is chosen at random and the weights on the
selected features are sampled from a standard multivariate Gaussian distribution. The weights on
other features are 0. We then take y = Xw + n−1/2∥Xw∥2ϵ, where w is the weights on features
and ϵ is a standard Gaussian vector. In the experiment, we used the trace norm of the submatrix
corresponding to J , XJ , i.e., tr(XT

J XJ)
1/2. Thus, our problem is minw∈Rp

1
2n∥y − Xw∥22 + λ ·

tr(XT
J XJ)

1/2, where J is the support of w. Or equivalently, minA∈V g(A) + λ · tr(XT
AXA)

1/2,
where g(A) := minwA∈R|A| ∥y−XAwA∥2. Since the first term is a supermodular function [4] and
the second is a submodular function, this problem is the D.S. programming problem.

First, the graphs in Figure 2 show the training errors, test errors and computational time versus λ for
PRISM and SSP (for p = 120, n = 150 and k = 10). The values in the graphs are averaged over 20
datasets. For the test errors, we generated another 100 data from the same model and applied the es-
timated model to the data. And, for all methods, we tried several possible regularization parameters.
From the graphs, we can see the following: First, exact solutions (by PRISM) always outperform
approximate ones (by SSP). This would show the significance of optimizing the submodular-norm.
That is, we could obtain the better solutions (in the sense of prediction error) by optimizing the
objective with the submodular norm more exactly. And, our algorithm took longer especially when
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Data Attr. Class exact (PRISM) approx. (SSP) generative
Chess 36 2 96.6 (±0.69) 94.4 (±0.71) 92.3 (±0.79)
German 20 2 70.0 (±0.43) 69.9 (±0.43) 69.1 (±0.49)
Census-income 40 2 73.2 (±0.64) 71.2 (±0.74) 70.3 (±0.74)
Hepatitis 19 2 86.9 (±1.89) 84.3 (±2.31) 84.2 (±2.11)

Table 2: Empirical accuracy of the classifiers in [%] with standard deviation by the TANs discrim-
inatively learned with PRISM or SSP and generatively learned with a submodular minimization
solver. The numbers in parentheses are computational time in seconds.

λ smaller. This would be because smaller λ basically gives a larger size subset (solution). Also,
Table 1 shows normalized-mean prediction errors by the prismatic algorithm, the supermodular-
submodular procedure, the greedy method and the lasso for several k. The values are averaged over
10 datasets. This result also seems to show that optimizing the objective with the submodular norm
exactly is significant in the meaning of prediction errors.

5.2 Application to discriminative structure learning

Our second application is discriminative structure learning using the UCI machine learning reposi-
tory.2 Here, we used CHESS, GERMAN, CENSUS-INCOME (KDD) and HEPATITIS, which have
two classes. The Bayesian network topology used was the tree augmented naive Bayes (TAN) [22].
We estimated TANs from data both in generative and discriminative manners. To this end, we used
the procedure described in [20] with a submodular minimization solver (for the generative case), and
the one [21] combined with our prismatic algorithm (PRISM) or the supermodular-submodular pro-
cedure (SSP) (for the discriminative case). Once the structures have been estimated, the parameters
were learned based on the maximum likelihood method.

Table 2 shows the empirical accuracy of the classifier in [%] with standard deviation for these
datasets. We used the train/test scheme described in [6, 22]. Also, we removed instances with
missing values. The results seem to show that optimizing the EAR measure more exactly could
improve the performance of classification (which would mean that the EAR is significant as the
measure of discriminative structure learning in the sense of classification).

6 Conclusions

In this paper, we proposed a prismatic algorithm for the D.S. programming problem (1), which is the
first exact algorithm for this problem and is a branch-and-bound method responding to the structure
of this problem. We developed the algorithm based on the analogy with the D.C. programming
problem through the continuous relaxation of solution spaces and objective functions with the help
of the Lovász extension. We applied the proposed algorithm to several situations of feature selection
and discriminative structure learning using artificial and real-world datasets.

The D.S. programming problem addressed in this paper covers a broad range of applications in
machine learning. In future works, we will develop a series of the presented framework specialized
to the specific structure of each problem. Also, it would be interesting to investigate the extension
of our method to enumerate solutions, which could make the framework more useful in practice.
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