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Abstract

The goal of this paper is to investigate the advantages aadidantages of learn-
ing in Banach spaces over Hilbert spaces. While many works baen carried
out in generalizing Hilbert methods to Banach spaces, mghper, we consider
the simple problem of learning a Parzen window classifierriepaoducing kernel
Banach space (RKBS)—uwhich is closely related to the notf@mtbedding prob-
ability measures into an RKBS—in order to carefully undamstits pros and cons
over the Hilbert space classifier. We show that while thisegalivation yields
richer distance measures on probabilities compared toilkeH space counter-
part, it however suffers from serious computational draskdamiting its practi-
cal applicability, which therefore demonstrates the nesdléveloping efficient
learning algorithms in Banach spaces.

1 Introduction

Kernel methods have been popular in machine learning andrpatnalysis for their superior per-

formance on a wide spectrum of learning tasks. They are bretablished as an easy way to
construct nonlinear algorithms from linear ones, by embegldata points into reproducing kernel

Hilbert spaces (RKHSs) [1, 14, 15]. Over the last few yeaesggalization of these techniques to
Banach spaces has gained interest. This is because any lvertHipaces over a common scalar
field with the same dimension are isometrically isomorphiitl@/Banach spaces provide more va-
riety in geometric structures and norms that are potentiedeful for learning and approximation.

To sample the literature, classification in Banach spacess generally in metric spaces were stud-
ied in [3, 22, 11, 5]. Minimizing a loss function subject to egularization condition on a norm
in a Banach space was studied by [3, 13, 24, 21] and onlineiteain Banach spaces was con-
sidered in [17]. While all these works have focused on th@akgeneralizations of Hilbert space
methods to Banach spaces, the practical viability and ariteromputational issues associated with
the Banach space methods has so far not been highlightedgdeti®f this paper is to study the
advantages/disadvantages of learning in Banach spacesipacison to Hilbert space methods, in
particular, from the point of view of embedding probabilibeasures into these spaces.

The concept of embedding probability measures into RKH%[4, 16] provides a powerful and
straightforward method to deal with high-order statist€sandom variables. An immediate appli-
cation of this notion is to problems of comparing distribut based on finite samples: examples
include tests of homogeneity [9], independence [10], andlitional independence [7]. Formally,
suppose we are given the sgt(X') of all Borel probability measures defined on the topological
spaceX, and the RKHS X, k) of functions onX” with k as its reproducing kernel (r.k.). K is
measurable and bounded, then we can enfbiedH as

P /X k(- x) dP(z). Q)



Given the embedding in (1), the RKHS distance between theeddibgs ofP and Q defines a
pseudo-metric betweéhandQ as

(P, Q) := )

/Xk(-,x)d]P’(:v)—/ k(- x)dQ(x)

X

H

It is clear that when the embedding in (1) is injective, tfieand Q can be distinguished based
on their embedding§,, k(-, z) dP(x) and [,, k(-, z) dQ(x). [18] related RKHS embeddings to the
problem of binary classification by showing that(P, Q) is the negative of the optimal risk associ-
ated with the Parzen window classifierdfi Extending this classifier to Banach space and studying
the highlights/issues associated with this generalimatid throw light on the same associated with
more complex Banach space learning algorithms. With thisvaion, in this paper, we consider
the generalization of the notion of RKHS embedding of pralitglmeasures to Banach spaces—in
particular reproducing kernel Banach spaces (RKBSs) [2#je-then compare the properties of the
RKBS embedding to its RKHS counterpart.

To derive RKHS based learning algorithms, it is essentiagpeal to the Riesz representation
theorem (as an RKHS is defined by the continuity of evaludtimetionals), which establishes the
existence of a reproducing kernel. This theorem hingesefeitt that a notion of inner product can
be defined on Hilbert spaces. In this paper, as in [24], wewli#aRKBSs that ar@niformly Fréechet
differentiableanduniformly conveXcalled as s.i.p. RKBS) as many Hilbert space arguments—+mos
importantly the Riesz representation theorem—can beazhorier to such spaces through the notion
of semi-inner-produc(s.i.p.) [12], which is a more general structure than animmeduct. Based
on Zhang et al. [24], who recently developed RKBS countéspafr RKHS based algorithms like
regularization networks, support vector machines, kepmnielcipal component analysis, etc., we
provide a review of s.i.p. RKBS in Section 3. We present ouinneantributions in Sections 4 and
5. In Section 4first, we derive an RKBS embedding Bfinto B’ as

P /XK(-,:E) dP(x), 3)

whereB is an s.i.p. RKBS withK as its reproducing kernel (r.k.) arifl is the topological dual of
B. Note that (3) is similar to (1), but more general than (1)@am (3) need not have to be positive
definite (pd), in fact, not even symmetric (see Section 3j aée Examples 2 and 3). Based on (3),
we define

Q)= | [ Keo)apo) - [ Koy

X X B’
a pseudo-metric o’ (X'), which we show to be the negative of the optimal risk assediatith the
Parzen window classifier ii’. Secondwe characterize the injectivity of (3) in Section 4.1 where
we show that the characterizations obtained for the injggif (3) are similar to those obtained for
(1) and coincide with the latter whéhis an RKHS.Third, in Section 4.2, we consider the empirical
estimation ofyx (P, Q) based on finite random samples drawn i.i.d. frBrand Q and study its
consistency and the rate of convergence. This is usefulphicgtions like two-sample tests (also in
binary classification as it relates to the consistency oP&ezen window classifier) where different
P andQ are to be distinguished based on the finite samples drawntfrem and it is important that
the estimator is consistent for the test to be meaningful skidav that the consistency and the rate
of convergence of the estimator depend onRaglemacher typef B’. This result coincides with
the one obtained foy, when3B is an RKHS.

The above mentioned results, while similar to results olewifor RKHS embeddings, are signifi-
cantly more general, as they apply RKBS spaces, which sub&KiHSs. We can therefore expect
to obtain “richer” metricsyx than when being restricted to RKHSs (see Examples 1-3). ©n th
other hand, one disadvantage of the RKBS framework ishd®, Q) cannot be computed in a
closed form unlikey, (see Section 4.3). Though this could seriously limit thecpcal impact of
the RKBS embeddings, in Section 5, we show that closed fopmession foryx and its empirical
estimator can be obtained for some non-trivial Banach spésme Examples 1-3). However, the
critical drawback of the RKBS framework is that the compiotabf v, and its empirical estima-
tor is significantly more involved and expensive than the FBdamework, which means a simple
kernel algorithm like a Parzen window classifier, when galieed to Banach spaces suffers from
a serious computational drawback, thereby limiting itscpical impact. Given the advantages of
learning in Banach space over Hilbert space, this work,efloee demonstrates the need for the



development of efficient algorithms in Banach spaces inraenake the problem of learning in
Banach spaces worthwhile compared to its Hilbert spacetegpart. The proofs of the results in
Sections 4 and 5 are provided in the supplementary material.

2 Notation

We introduce some notation that is used throughout the pdfmra topological spac&’, C'(X)
(resp.Cy (X)) denotes the space of all continuotessp. bounded continuous) functions dn For
a locally compact Hausdorff spacg, f € C(X) is said tovanish at infinityif for everye > 0 the
set{x : |f(x)] > €} is compact. The class of all continuogison X which vanish at infinity is
denoted a€’y(X'). For a Borel measurg on X', L?(X, ;1) denotes the Banach spacepepower
(p > 1) p-integrable functions. For a functiofi defined onR<, f and fV denote the Fourier
and inverse Fourier transforms ¢f Sincef and ¥ onR¢ can be defined irl.', L? or more

generally indistributionalsenses, they should be treated in the appropriate sensediegen the
context. In theL! sense, the Fourier and inverse Fourier transformg ef L' (R?) are defined as:

fly) = @m)=%2 [, f(x) e ") dz and f¥ (y) = (27)~ %2 [oa fz) ! ) da, wherei denotes
the imaginary unit/—1. ¢p := [5. ¢!~*) dP(z) denotes the characteristic functionfof

3 Preliminaries: Reproducing Kernel Banach Spaces

In this section, we briefly review the theory of RKBSs, whichsarecently studied by [24] in the
context of learning in Banach spaces. Bébe a prescribed input space.

Definition 1 (Reproducing kernel Banach spacé&n RKBSB on X’ is a reflexive Banach space of
functions onY such that its topological duab’ is isometric to a Banach space of functions.&n
and the point evaluations are continuous linear functienah bothB and B’.

Note that ifB is a Hilbert space, then the above definition of RKBS coingidith that of an RKHS.
Let (-, -)s be a bilinear form o x B’ wherein(f, ¢*)s := ¢*(f), f € B, g* € B’. Theorem 2in
[24] shows that ifB is an RKBS onX, then there exists a unique functiégh: X x X — C called
the reproducing kernel (r.k.) @, such that the following hold:

(a1) K(z,-) € B,K(-,x) € B',z € X,

(a2) f(x) = (f, K(,2))s, [*(z) = (K(z,:), f*)s, f € B, fr € B, x e X.
Note thatK satisfiesK (z,y) = (K(x,-), K(-,y))s and thereford({(-, ) andK (z, -) are reproduc-
ing kernels forB andB’ respectively. WherB is an RKHS,K is indeed the r.k. in the usual sense.
Though an RKBS has exactly one r.k., different RKBSs may hla@esame r.k. (see Example 1) un-
like an RKHS, where no two RKHSs can have the same r.k (by therttéronszajn theorem [4]).
Due to the lack of inner product id (unlike in an RKHS), it can be shown that the r.k. for a general
RKBS can be any arbitrary function otix X for a finite setX’ [24]. In order to have a substitute for
inner products in the Banach space setting, [24] considRKRIS B that are uniformly Fréchet dif-
ferentiable and uniformly convex (referred to as s.i.p. FRBs it allows Hilbert space arguments to
be carried over t&—most importantly, an analogue to the Riesz representtt@orem holds (see
Theorem 3)—through the notion sémi-inner-products.i.p.) introduced by [12]. In the following,
we first present results related to general s.i.p. spacethandconsider s.i.p. RKBS.

Definition 2 (S.i.p. space) A Banach spac® is said to be uniformly Rechet differentiable if for

all f,g € B, limyer 10 w exists and the limit is approached uniformly ffirg in the
unit sphere ofB. B is said to be uniformly convex if for adl > 0, there exists @ > 0 such that
lf +glls <2—dforall f,g € Bwith|fl|z = |lgl|ls =1and||f — g||lz > €. Bis called an
s.i.p. space if it is both uniformly Echet differentiable and uniformly convex.

Note that uniform Fréchet differentiability and uniforrmroexity are properties of the norm associ-
ated withB. [8, Theorem 3] has shown thatlfis an s.i.p. space, then there exists a unique function
[,-]s : B x B — C, called the semi-inner-product such that foraly, » € B and\ € C:

(as) [.f+gvh]3 = [fa h]3 + [gvh]fn
(a4) [)\f7 g]‘B = )\[fa g]B’ [fa Ag]B = X[fa g]B:
(as) [f, fls =t If]|% > 0for f #0,



(ag) (Cauchy-Schwartz)f, gls|* < || fII5%lg/1%.

andlimger 1o Hf“g”i:‘”f”ﬂ — Re(H[J‘vagﬂ‘), f.g € B, f # 0, where R¢a) anda represent the

real part and complex conjugate of a complex numheNote that s.i.p. in general do not satisfy

conjugate symmetnyif, gls = [g, f]s for all f,¢g € B and therefore is not linear in the second
argument, unless is a Hilbert space, in which case the s.i.p. coincides wighitimer product.

SupposeB is an s.i.p. space. Then for eabhe B, f — [f,h]s defines a continuous linear
functional onB, which can be identified with a unique elemérite B’, called thedual functionof

h. By this definition ofh*, we haveh*(f) = (f,h*)s = [f, h]s, f,h € B. Using the structure of
s.i.p., [8, Theorem 6] provided the following analogueHrto the Riesz representation theorem of
Hilbert spaces.

Theorem 3([8]). Supposé is an s.i.p. space. Then

(a7) (Riesz representation theorem) For eagte B’, there exists a unique € B such that
g=nh"ie.g(f)=1[f hls, f€Band|gllz = |hls.
(ag) B’ is an s.i.p. space with respect to the s.i.p. definethbyf*]s. = [f, h]s, f,h € B
and||h*||5 = [h*, h*] 7
For more details on s.i.p. spaces, we refer the reader toy8pncrete example of an s.i.p. space

is as follows, which will prove to be useful in Section 5. Lét, <7, 1) be a measure space and
B = LP(X,u) for somep € (1,+00). Itis an s.i.p. space with du&’ := L(X, ) where

q= ﬁ. For eachf € B, its dual element irB’ is f* = W Consequently, the semi-inner-
LP(X,p)
product onB is ’
. falglP~? du
[f, 9] =g"(f) = f— (4)
Hg”LP(X M)

Having introduced s.i.p. spaces, we now discuss s.i.p. RWBiSh was studied by [24]. Using the
Riesz representation for s.i.p. spaces (e (Theorem 9 in [24] shows that® is an s.i.p. RKBS,
then there exists a uniquerk. : ¥ x X — C and a s.i.p. kerngl : X x X — C such that:

(ag) G(z,-) e Bforall x € X, K(-,z) = (G(x,"))*, z € X,
(ar0) f(z) =[f,G(x, )]s, f*(x) = [K(x,-), f]p forall f € B,z € X.

Itis clear thatG(z,y) = [G(z,-), Gy, )]s, z,y € X. Since s.i.p. in general do not satisfy conju-
gate symmetryZ need not be Hermitian nor pd [24, Section 4.3]. The Kkand the s.i.p. kernel
G coincide when spdiG(z, -) : @ € X'} is dense irB, which is the case wheh is an RKHS [24,
Theorems 2, 10 and 11]. This means wheis an RKHS, then the conditionsd) and 1) reduce
to the well-known reproducing properties of an RKHS with $hign. reducing to an inner product.

4 RKBS Embedding of Probability Measures

In this section, we present our main contributions of dagvand analyzing the RKBS embedding
of probability measures, which generalize the theory of FKdinbeddings. First, we would like to
remind the reader that the RKHS embedding in (1) can be dkbyehoosingF = {f : || f|l+c < 1}

= sup

=l [ sie- [ 1|

See [19, 20] for details. Similar to the RKHS case, in Theodeme show that the RKBS embed-
dings can be obtained by choosifig= {f : ||f||lz < 1} in v5(P, Q). Interestingly, thougtB does
not have an inner product, it can be seen that the structwenoifFinner-product is sufficient enough
to generate an embedding similar to (1).

Theorem 4. LetB be an s.i.p. RKBS defined on a measurable sgaedgth GG as the s.i.p. kernel
and K as the reproducing kernel with both and K being measurable. Lék = {f : || f||z < 1}

andG be bounded. Then
- | K.2)d00)
X

1k (P, Q) := ®)

B/



Based on Theorem 4, it is clear th&t can be seen as being embedded ifoas P —
S K(-,z) dP(z) andyx (P, Q) is the distance between the embedding®aindQ. Therefore,
we arrive at an embedding which looks similar to (1) and cdies with (1) wher is an RKHS.

Given these embeddings, two questions that need to be aadveeithese embeddings to be practi-
cally useful are: £) When is the embedding injective? and) Canvx (P, Q) in (5) be estimated
consistently and computed efficiently from finite random pkas drawn i.i.d. froni? andQ? The
significance of £) is that if (3) is injective, then such an embedding can beal usdlifferentiate
between differen andQ, which can then be used in applications like two-sample testifferen-
tiate betweer® andQ based on samples drawn i.i.d. from them if the answexdi6 affirmative.
These questions are answered in the following sections.

Before that, we show how these questions are important arpidassification. Following [18], it
can be shown thafy is the negative of the optimal risk associated with a Parzedew classifier

in B’, that separates the class-conditional distributbasdQ (refer to the supplementary material
for details). This means that if (3) is not injective, thea thaximum risk is attained fd # Q, i.e.,
distinct distributions are not classifiable. Therefore, itljectivity of (3) is of primal importance in
applications. In addition, the question i is critical as well, as it relates to the consistency of the
Parzen window classifier.

4.1 Whenis (3) injective?

The following result provides various characterizatiomsthe injectivity of (3), which are similar
(but more general) to those obtained for the injectivitylgfgdnd coincide with the latter whel is
an RKHS.

Theorem 5(Injectivity of vx). Supposé is an s.i.p. RKBS defined on a topological spatwith
K andG asiits r.k. and s.i.p. kernel respectively. Then the folhgahiold:

(a) Let X be a Polish space that is also locally compact Hausdorff. @®8pG is bounded and
K(xz,-) € Cyo(X) forall x € X. Then (3) is injective i3 is dense irCy (X).

(b) Suppose the conditions in (a) hold. Then (3) is injedfi#&is dense in.? (X, ) for any Borel
probability measurg: on X’ and some € [1, c0).

Since it is not easy to check for the denseness of Cy (X') or LP(X, i), in Theorem 6, we present
an easily checkable characterization for the injectivityf3) when K is bounded continuous and
translation invariant oiR?. Note that Theorem 6 generalizes the characterization[{€e€0]) for
the injectivity of RKHS embedding (in (1)).

Theorem 6 (Injectivity of v, for translation invariamK) Let X = R Suppose (z,y) =
Y(x —y), wherey : R? — R is of the form(z = [pa e!®w) dA(w) and A is a finite complex-

valued Borel measure dR?. Then (3) is |nject|ve iBupgA) = R?. In addition if K is symmetric,
then the converse holds.

Remark 7. If 1) in Theorem 6 is a real-valued pd function, then by Bochnéestem A has to be
real, nonnegative and symmetric, i.4(dw) = A(—dw). Sincey need not be a pd function fdt

to be a real, symmetric r.k. &, A need not be nonnegative. More generally)ifs a real-valued
function onR<, thenA is conjugate symmetric, i.e\(dw) = A(—dw). An example of a translation
invariant, real and symmetric (but not pd) r.k. that satisftae conditions of Theorem 6 can be
obtained withy(z) = (425 + 92% — 1822 + 15) exp(—2?). See Example 3 for more details.

4.2 Consistency Analysis

Consider a two-sample test, wherein given two sets of ransamples,{ X;}7., and {Y;}7_
drawn i.i.d. from distribution® and Q respectively, it is required to test whetHer— Q or not
Given a metricyx on &(X), the problem can equivalently be posed as testing £di?, Q) = 0 or
not, based o4 X}, and{Y;}"_,, in which caseyx (P, Q) is estimated based on these random
samples. For the test to be meaningful, it is important thist éstimate ofyx is consistent. [9]
showed thatk (P.,,, Q,,) is a consistent estimator of; (P, Q) when3B is an RKHS, wher@®,,, :=

% Z;.”:l Ox;r Qn = %Z?:l dy; andd, represents the Dirac measurezate X. Theorem 9
generalizes the consistency result in [9] by showing thatP,,,, Q,,) is a consistent estimator of



vk (P, Q) and the rate of convergenced§m (! —*/t + n(1=0/t) if B’ is oftypet, 1 < ¢ < 2. Before
we present the result, we define tigpeof a Banach spacé [2, p. 303].

Definition 8 (Rademacher type dB). Let1 < ¢t < 2. A Banach spacé is said to be oft-

Rademacher (or more shortly, ¢fpe t) if there exists a constart™ such that for anyN > 1

and any {f;}), C B: (B350, 0ifil%)"" < (L, IIfil%)"", where {o;})Y, are
i.i.d. Rademacher (symmetricl-valued) random variables.

Clearly, every Banach space is of type 1. Since having tyfor ¢’ > ¢ implies having typé, let us
definet*(B) := sup{t : B has typet}.
Theorem 9(Consistency ofyx (P,,,, Q,,)). LetB be an s.i.p. RKBS. Assume= sup{/G(z,z) :

r € X} < oo. Fixd € (0,1). Then with probabilityl —¢ over the choice of samplgs(; } 72, sihp

and{Y;}7_, " Q, we have

(P, @u) = 7 (P, Q)] < 2C 0 (e 40" ) + /182 log(478) (m ™% +n7?),
wheret = ¢*(B’) andC* is some universal constant.

It is clear from Theorem 9 that if(B’) € (1,2], thenyx (P, Q,,) is a consistent estimator of
vk (P, Q). In addition, the best rate is obtainedi{B’) = 2, which is the case 1B is an RKHS. In
Section 5, we will provide examples of s.i.p. RKBSs thatsfati* (B') = 2.

4.3 Computation ofyx (P, Q)

We now consider the problem of computing:(P,Q) and vk (P.,,Q,). Define \j :=
Jo K (z). Consider

* * (as) (a3) * * *
7% (P, Q) = ||/\IP_)\@H293/ = s — /\Qa/\IP’ Agls/ = [, Ap — )‘Q] — [Ags A — Agls

/ K(- ), N — / K( SRR

- / K (), N — Nyl dP(x) — / K (), A — Nyl dQ(z)

X

- [ [kt [ KCae-0w)], de-0). ©)

where(x) is proved in the supplementary material. (6) is not redecéts the s.i.p. is not linear in
the second argument unleBgs a Hilbert space. This meang (P, Q) is not representable in terms
of the kernel functionK (x, y) unlike in the case oB being an RKHS, in which case the s.i.p. in
(6) reduces to an inner product providing

V2 (P,Q) = //K:cy (P - Q)(x) d(P - Q)(y).

Since thisissue holds for afty Q € (X)), it also holds foi?,,, andQ,,, which means k (P.,,, Q)
cannot be computed in a closed form in terms of the ked¢k, ) unlike in the case of an RKHS
whereyk (P, Q,,) can be written as a simple V-statistic that depends only<@m, y) computed
at{X;}7, and{Y;}7_,. This is one of the main drawbacks of the RKBS approach wheze t
S.i.p. stfucture does not allow closed form representatiorierms of the kernel( (also see [24]
where regularization algorithms derived in RKBS are notable unlike in an RKHS), and therefore
could limit its practical viability. However, in the folloing section, we present non-trivial examples
of s.i.p. RKBSs for whichyk (P, Q) and~yx (P,,, Q,,) can be obtained in closed forms.

5 Concrete Examples of RKBS Embeddings

In this section, we present examples of RKBSs and then dére&eorrespondingx (P, Q) and

vi (Pm, Q) in closed forms. To elaborate, we present three exampléstvar the spectrum:
Example 1 deals with RKBS (in fact a family of RKBSs inducedtbg same r.k.) whose r.k. is pd,
Example 2 with RKBS whose r.k. is not symmetric and therefartepd and Example 3 with RKBS
whose r.k. is symmetric but not pd. These examples showhkaBanach space embeddings result
in richer metrics on??(X’) than those obtained through RKHS embeddings.



Example 1 (K is positive definite) Let i be a finite nonnegative Borel measure®f. Then for
anyl < p < cowithg = p%l

BRI(RY) = {fu(:r) = [ a0 aut) s we L@, w e Rd} | @)
Rd
is an RKBS withi (z, y) = G(z,y) = (u(R%))P=2/P [, e=# @1 dy(t) as the rk. and
k@) =] [ - @],, ., = 1= bl ®)

First note thatk is a translation invariant pd kernel o®? as it is the Fourier transform of a
nonnegative finite Borel measuye, which follows from Bochner’s theorem. Therefore, though t
s.i.p. kernel and the r.k. of an RKBS need not be symmetesghce in (7) is an interesting example

of an RKBS, which is induced by a pd kernel. In particularaih e seen that many RKB%?(Rd)
foranyl < p < oo) have the same r.k (ignoring the scaling factor which can lagenone for any

p by choosing: to be a probability measure). Second, note mg‘i isan RKHS whep = ¢ = 2
and therefore (8) generalizeg (P, Q) = |[¢p — dgl|L2(re,,)- By Theorem 6, it is clear thaty in

(8) is a metric onZ?(R?) if and only ifsupg i) = R?. Refer to the supplementary material for an
interpretation ofBEd(Rd) as a generalization of Sobolev space [23, Chapter 10].

Example 2(K is not symmetric) Letu be a finite nonnegative Borel measure such that its moment-
generating function, i.eM,, (z) := [, ef®t) dyu(t) exists. Then for any < p < oo with ¢ = %

BI(RY) := {fu( ) = /Rdu(t)ew> du(t) : u e LP(RY, p), = eRd}

is an RKBS Withs (z, y) = G(z,y) = (M, (qz))*~2/? M, (2(q — 1) + y) as the rk. Suppose

P andQ are such thatMp and Mg exist. Thenyx (P, Q) = || fpa €™ d(P — Q)(2)|| pa(ra ) =
[Mp — Mgl 1.4(ra, .y Which is the weighted? distance between the moment-generating functions
of PandQ. Itis easy to see that fupdy) = R, thenyg (P,Q) = 0 = Mp = Mga.e. = P =

Q, which means/ is a metric onZ?(R?). Note thatK is not symmetric (fog # 2) and therefore

is not pd. Whep = ¢ = 2, K (x,y) = M, (z +y) is pd andB}*(R?) is an RKHS.

Example 3 (K is symmetric but not positive definite) Let ¢ (x) =
Ae=" (425 + 92 — 1822 + 15) with A := (1/243) (472/25)"/°. Then

BIPYR) .= {fu( ) = /(w—t)Qe_Lz;t) u(t)dt - ue L3(R), z € R}
2 R
is an RKBS with rkK (z,y) = g(x,y) = w(:c — y). Clearly, v and thereforeK are not pd
(though symmetric o) as ¢(z) = —e T (2% — 392 + 2162% — 324) is not nonnegative at

349922
everyx € R. Refer to the supplementary material for the derivationofand ¢». In addition,
(P, Q) = || [ 0( — 2) d(P — Q)(z)|| La(r) = 16 (¢p — 60))" [l La(r), Whered(t) = t?e3".
Sincesupp(f) = R, we havemP, Q) =0=(0(dp—00))" =0=0(gp—¢g) = 0= ¢» = ¢g
a.e., which implie® = Q and thereforeyx is a metric on(R).
So far, we have presented different examples of RKBSs, wihare have demonstrated the nature
of the r.k., derived the Banach space embeddings in cloged dod studied the conditions under
which it is injective. These examples also show that the RiEB®eddings result in richer distance
measures on probabilities compared to those obtained biRiK¢S embeddings—an advantage
gained by moving from Hilbert to Banach spaces. Now, we amrsihe problem of computing
vk (P, Q,,) in closed form and its consistency. In Section 4.3, we shalatlyx (P,,, Q,,) does
not have a nice closed form expression unlike in the casB béing an RKHS. However, in the
following, we show that forK in Examples 1-37x (P.,,, Q,,) has a closed form expression for
certain choices of. Let us consider the estlmatlon ok (P, Q):

@) = | [ o)~ G| = [ \ | vatya®, - @)@ dute)

:/‘EZb(Xj —%anby t‘ dp(t 9
X j=1 j=1




whereb(z,t) = '@ in Example 1h(x,t) = ¢ in Example 2 and(z,t) = 6(x — t) with
g = 3 andu being the Lebesgue measure in Example 3. Since the duals BERKonsidered
in Examples 1-3 are of typsin(q,2) for 1 < g < oo [2, p. 304], by Theorem %y (P, Q)

max(1—gq,—1) max(1—q,—1)

estimatesyx (P, Q) consistently at a convergence rate(@fm =@+ n =n@? ) forq €
(1,00), with the best rate oD (m /2 + n~1/2) attainable whery € [2,00). This means for
q € (2,00), the same rate as attainable by the RKHS can be achieved. thewroblem reduces
to computingyx (P, Q,,). Note that (9) cannot be computed in a closed form foralisee the
discussion in the supplementary material about approxigaic (P,,,, Q,,). However, whery = 2,
(9) can be computed very efficiently in closed form (in terrhg@ as a V-statistic [9], given by

"K(X, X, " K(Y;,Y, e~ K(X,,Y)
SIS LR SRS IRINPS o WE- o LU SCT)
=1 7,l=1 j=11=1
More generally, it can be shown thatjif= 2s, s € N, then (9) reduces to

@) = [ [ [ T b 00 ddne) [LdBn - Q) @

for which closed form computation is possible for approjgriahoices ofb and . Refer to
the supplementary material for the derivation of (11). BFand x as in Example 1, we have
Az, ...,zq) = (M(Rd)prK (ijl Toj1,D 5 xgj), while for b and i as in Example 2,
we haveA(zy,...,zq) = M,( 521 x;). By appropriately choosing and . in Example 3, we
can obtain a closed form expression #fz, . . ., z4), which is proved in the supplementary mate-
rial. Note that choosing = 1 in (11) results in (10). (11) shows thaf. (P,,,, Q,,) can be computed
in a closed form in terms afl at a complexity ofD(m?), assumingn = n, which means the least
complexity is obtained fogy = 2. The above discussion shows that for appropriate choices of
i.e.,q € (2,0), the RKBS embeddings in Examples 1-3 are useful in practicg@P,,, Q,,) is
consistent and has a closed form expression. However, éndick of the RKBS framework is that
the computation of/x (P,,,, Q,,) is more involved than its RKHS counterpart.

6 Conclusion & Discussion

With a motivation to study the advantages/disadvantaggsméralizing Hilbert space learning algo-
rithms to Banach spaces, in this paper, we generalized tienraf RKHS embedding of probability
measures to Banach spaces, in particular RKBS that areroiyfé-réchet differentiable and uni-
formly convex—note that this is equivalent to generalizigKHS based Parzen window classifier
to RKBS. While we showed that most of results in RKHS like atjety of the embedding, con-
sistency of the Parzen window classifier, etc., nicely galimer to RKBS yielding richer distance
measures on probabilities, the generalized notion is kssctive in practice compared to its RKHS
counterpart because of the computational disadvantageiat=d with it. Since most of the existing
literature on generalizing kernel methods to Banach spadealsvith more complex algorithms than
a simple Parzen window classifier that is considered in thjgep we believe that most of these
algorithms may have limited practical applicability, tlgbuthey are theoretically appealing. This,
therefore raises an important open problem of developimgpedationally efficient Banach space
based learning algorithms.
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