Supplementary Material: Message-Passing for
Approximate MAP Inference with Latent Variables

Appendix A: Variational Derivation for Hybrid M essage Passing Algorithm

The Marginal-MAP problem can be formulated by
argmax log p(z) = argmax A(6;) Q)
TEX TEX
whereX is the set of all possible assignments. The correspondingmaaginals satisfy
pmax € Mz = {pzlforanyz’ € X, pz(2") = 1iff 2’ = z}
So solving Marginal-MAP problem is equivalent to solving flollowing optimization problem:

max  sup (0, p) + Hpetne(n) &  sup sup (0, 1) + Hpetne (1) )
TEX Jothert€ M (Gz) Hmax €Mz prome€ M (Gz)

lother CONtains all the marginals except, ... BY relaxing .S to satisfy only normalization
and marginalization conditions, and only relaxing the ¢@ists onysym-max (Here we distinguish
betweenusum-smax aNd timax_sum DY the direction of messages). Define

ZZS ps(zs) =1, ps () = 1iff x5 = 25,
Zzt Mst(vs; Zt) = Ms(vs)y
L.(Gz)=qp=>0 Do, st(Zs,00) = pue(vr),
Pt (Ts, 2¢) = pe(ze) iff 5 = T,
pst(ws,wy) = 1iff vy = Ty, 20 = 24

On M; x L., we only allowz to take integral solutions and fixed the corresponding assaént for
pairwise marginal$imax_sum but we allowusym-.max to assign partial probability to max nodes. In
2, the Bethe entropy terms can be written Asi¢ the entropy and is mutual information)

HBethe(U) =1 + H -1 — 71 -1 I

Hmax Hsum Hmax— Fmax Hsum— Hsum Hmax— Hsum Hsum— Mmax

We have

e Entropy of max nodeél,, ., = Hs(us) =0, Vs € X.
e Mutual information between max nodés . . = Lot (s, ) =0, Vs, t € X.
e Mutual information from max node to sum node

I/J'max_ﬁl«sum = ISt (.fs, Zt) (3)
- Z Hst (1’37 Zt) log M (4)
(T5,2¢) EXs X 24 ruS(xs)Mt(Zt)
S i ) o
2 €24 MS(x )Mt(zt)
= 0, Vse X,teZ ©)

wherex* is the assigned state ofat nodes.



e Entropy for sum nodes, Mutual information between sum npded from sum node to
max node is nonzero as we allow sum nodes assign probabilitimax nodes.

Now, we do the LP-relaxation on max nodes and the relaxednigtion problem on new domain
L(G)is

sup <,U7 9> + H(,Usum) - I(,Usum—>sum) - I(Msum—>max) @)
nEL(G)

sz ps(vs) =1,
L(G) =<pn>0 th pst (Vs, vt) = N’S(US)7

sz Hst (1}3, vt) = ut(vt).

where

Lets,t € V, Ay be a Lagrangian multiplier associated with the normalrationstrainCs, (1) =

0, where
p) =1~ ZNS(”S)

Vg

Similarly, we define the constraints for each directior s for every possible edge.

Cts ('Us; ;U') = Ms (Us) - Z Hst (Usa Ut)

Ut

and its Lagrange multipliek;;(v,). Then the Lagrangian for the Bethe variational problem (BVP
is

L(Ma A 9) = sup <,u> 0> + H(Msum) - I(Msum—>sum) - I(Msummax)
pneL(G)

+ ZASSCSS(,LL) + Z Z)\ts Cts Us,,u +Z>\sf Ut Csf(vta ) (8)

seV (s,t)eE Yt

Now we show that the partial derivative with respect to défe ;s are identical to the derivatives
in the standard sum/max product formulations (dependinip@emode type).

Taking the derivative with respect to the node marginals of:

Sum Nodes

For sum node, denote its (pseudo-)marginal as.

V/LSL = vuq{<asumy Hsum) + H(Nsum + Z )\secee Z Z >\tq Ctg Ug, ,U + Z Aqf ’Uf Cgf(’Uf, ,U,)]}
seV (s,t)EE vs vt
= 05(25) + Ass + Z )\ts(ZS) - IOg ,us(zs) (9)
teEN(s)

In [1] (page 84, eq. (4.19)), using our notation, the Lagrandor the BVP to marginal problem is

Loum (i, A 0) = (0, 1) + H(1) + Y AasCas () + Y ZM %) Crs (255 1) + Y Ast(20)Cat (215 1) | (10)
s€Z (s,t)eE 2t
vusLsum = V;LSL
So, for sum nodes, the derivative of node marginals is theesasrthose for the BVP to marginal
problem. Similar arguments hold for the pairwise margirmdtveen sum nodes, and st¥max
node pair. Thus we have the identical equations to Eq.(4E28%.24)[1]:

ﬂs(zs) = /{exp H Mst Zt (11)
uEN(‘;)
pat(zs,2t) = K exp(Out(ze,20) +0s(20) + 0u(20)) [ Muslze) [ Mur(20)(12)
ueN (s)\t uweN (t)\s



For any type of nodein the graph, its marginal can be represented as

pe(ve) = rexp{f(ve)} H M (vy)
sEN(t)

(We will show this for max node in the following subsectio®imilarly, taking the derivative w.r.t.
lst, $ € Z andt € X and combine with Eq (12),

pse(z,v0) = K exp(Ou(ze,v) +0s(2) +00(v))  [[ Mus(ze) ] Mue(v:)(23)
ueN (s)\t u€eN (t)\s

By applying the marginalization constraints, fis:(zs,v:) = pe(vi), we get the message from
sum node to any nodes:

Mis(vs) < K1 Z {exp Ost(vs, z;) + 04(21)] H My (2 }

2 €2 wEN (t)\s

Max Nodes

For the derivative w.r.t. node marginals of max nodegss € X.
v,usL = 09 (Is) + >\ss + Z )\ts(xs) == v,usLmaz
teEN(s)

where Lnax is the Lagrangian of pure MAP problem. Similarly, we alsoédav

V.U'maxamaxL = vﬂmaxamameaX = vaaxasumL
It is identical to follow [1] (Section 8.2) to check that mayarginal:
ps(zs) = kexp(d H My ()
uEN(s)

and the fixed point of max messages:

M (vg) + K2 max {exp[@st(vs,xg) + 0¢(x})] H Mut(x;)}

Tl EX,
t= uEN (t)\s

provide a solution to the (partial) problemax, fimax—s jumac fmax—suem)- 1N CONClusion, the hybrid
message passing gives an approximation to the Marginal-ptaBlem.

Appendix B: EM via M essage Passing
B.1 EM Objective

Note here that standard EM doesixy >, pe(x|2) for fixed x, but we wantmax, . ps(z|2)
for fixed #. The derivation is nearly identical and we do not write dowa tependency of for
convenience. Defing(p, x) = E;[log p(x, 2)]+H (p(z)) based on the following routine application
of Jensen’s inequality:

logp(z) = log) p(x,2)

= log Zﬁ(zr) -

Zp 1og{ (xvz):|
Zp )logp(z, z) — Zp )logp(z (14)

(33, 2)

Y

\_/

Solog p(z) > Ej(.) log p(x, z) — Ej.y log p(2) = Epllog p(x, 2)] + H(p(2))



B.2 Proof?! of Proposition 1

Proposition 1. With the value of fixed in function’, the unigue solution to maximizirg(p, x) is
given byp(z) = p(z|z).

Proof. Sincep(z) is a distribution ovet, Y p(z) = 1. This is a constrained optimization problem,
so the Lagrangian is

L(p,x) = F(p,x) — A (Zﬁ(z) — 1)

A is the Lagrange multiplier. So at the maximuitr), the derivative ofL. with respect to the
components of should be zero. Then we have where

A =logp(z, z) —logp(z) — 1
This indicateg(z) o p(z, z) and given the constraint that . p(z) = 1, the unique solution to this
optimization problem i$(z) = p(z|z). (Notez is fixed here.) O

B.3 Proof of Proposition 2

Proposition 2. If p(z) = p(z|z), thenF' (p, z) = log p(x) = log > p(z, 2).

Proof.

Fp,x) = Ezq [logp(x’z)]+H(~)
= Ej) [logp(z, 2)] — Ej() [log p(2|2)]
Ej5(z)llog p(z, 2) — logp( |z)]
Ej(x)[log p(x)]
= logp(x) (%)

B.4 Derivation of EM via M essage Passing

E-step: Estimatg(z) = p(z|z) given x.
M-step: Consider the conditional,

pola | 2) = 2 L0:9(,2)) — A6)
S exp[(0,6(x",2)) = A(O)]

whereB. (0) =log )" exp [(0, ¢(x, 2))].
Fixing z in p(z|z) to bez, the assignment given by the previous M-step,

= exp [<9, (;5(:];, Z)> - Bz(e)]

mngzwpe(z |7) logpg(z,2) = mngszg(z |z logpe(7 | 2)

max Y p(z | )0, 6(z. 2)) — B-(0)]

= max Y p(= | 2)(0, 6(x,2) (16)

We use the shorthand notation of overcomplete representaftisufficient statistics in the following
table.

The proofs in B.2 and B.3 are almost identical to Lemma 1 and 2 in [22 ga.



SYMBOL EXPRESSION

Oz ZseX > i Osiilsi(s)

©: >sez i silsii(zs)

Oue Z(s,t)EE,s,tEX Z(i,j) Ost;ijLotsig (zs,¢)

0. Do(st)eB s ez 2 (i) Dstiijlstiij (s, 2t)

a2 Z(Svt)GE.,seX,teZ Z(i,j) Ostsijlstij (s, 2t)

Then
D p(z|2)0,(x,2)) = > p(z]E) [0 + O + Oy + Oz + O]

= Ou+06u+ Y p(z]2)0s: +C

%

@1 + @;C$ + Z Z est;ij]ls;i(ms),u/t;j +C

(s,t)EE,s€eX te€Z (i,5)

= Z [65;1‘ + Z ,Uft;jgst;ij] Hs,l(xs)

seX,i teZz,j

+ Z Z est;ij]lst;ij (:Es» mt) + C (17)

(s,t)EE,s,t€X (i,5)

where C' subsumes the terms irrelevant to the maximization aver. is the pseudo-marginal
of nodet given z, so we get an approximation instead of an equality, and wethesdact that
>-.p(z|z) = 1. Then, the M-step amounts to running the max product algorivith potentials
onx nodes modified according to Eq (17).

Appendix C: Hybrid Tree-Reweighted M essage Passing Algorithm

On loopy graphs, we can also apply the hybrid scheme and ggtradiree-reweighted message
passing algorithm (which we use in the experiments on thgylgmaphs and the protein data). It is
sketched in Algorithm 1.

Appendix D: Related Work and Discussion

On a high-level, the Marginal-MAP problem can be seen asglaiisearch over the space of all
possible assignments over the max nodes of the graph, hdeimga variable elimination over the
sum nodes. Several heuristics exists to perform this sesdegh Typical approaches under this cat-
egory include methods such as branch-and-bound and bemctig8, 4]. However these methods
are designed to give only the MAP estimates for the max nodeseas our hybrid message-passing
algorithm provides both the MAP estimates for the max nodelsmaarginals for the sum nodes.

In principle, we note however that the Expectation-Maxitian algorithm [5] can also be used
if the marginal posterior in the E-step can be computed in closed-form. if then Monte-Carlo
simulations can be used to estimate the expectation. Altiealy, [6, 7] proposed an MCMC-based
algorithm fordirect maximization of marginal posterior distributions by irduing an artificially
augmented probability model, whose sampling gives makgdit#sP estimates of the variables of
interest. Recently, [8] proposed a Sequential Monte Caalketl approach (similar to simulated
annealing) which is much less sensitive to initializatibart EM/MCMC algorithms.

In our work, we take a different approach and show how mespagsing algorithms for graphical
models can be used to obtain marginal-MAP estimates in ati@nal framework [1]. A lot of work

has gone into improving the standard sum-product and madtjat algorithms [9, 10], and there is
no apparent reason why such advances cannot also improwglaid message passing algorithm.



Algorithm 1 Hybrid Tree-Reweighted Message-Passing Algorithm
Inputs: GraphG = (V. E),V = X U Z, potentiald,,, s € V andfy,, (s,t) € E.
1. Initialize the messages to some arbitrary value.

2. (Greedily) Find a set of spanning trégghat covers G, and compute the edge appearance
probabilityw,, for (s, t) € E.

3. For each node in GG, do the following until messages converge (or maximum nurobe
iterations reached)

e If s € X, update messages by

Mia(va) + 5 max {exp[
T EX

1 e s Mur (1)
Osi(vs, x) + 04 () 18
Wey K f( t) 1‘( f)] J\/jslt—wst (xi) ( )

e If s € Z, update messages by

1 IL. s My (21)
Mts(vs) “— K Z {eXp[w test(US7 Z;) + et(Z,é)] e]]\\;(;)—\wst (Zt/) ! (19)
s st t

Z€EX
4. Compute the local belief for each nogleu, (vs) = r exp{0s(vs)} [T1ens) Mes™ (vs)

5. Forallzg € X, returnarg max,_cx, ts(2s)
6. Forallz, € Z, returnpg(zs).

Before concluding, we discuss another recent work by Liu duher [11] which is most similar
in spirit to our work, and is a simultaneous development. &md Ihler [11] proposed a method
based optimizing a variational objective on specific graphcsures. Here we would highlight the
similarities and the differences between their work anéour

In particular, we define the log-partition function for theurginal-MAP problem by fixing thec
assignments t& and constructing a new graghz. Liu and Ihler [11], on the other hand, use
the conditional entropy (conditioned on the max nodes) findehe free energy term in the log
partition function. Both ways of defining the log partitiaimiction are equivalent because fixing the
x assignments amounts to conditioning.

In our approach, we then define the marginal polytope wiet MAP x assignments we are seeking,
and propose relaxations that give us our final variationg@alve (11). We then derive a hybrid
message-passing algorithm for this variational objedtiaails in appendix A), in a way similar to
how standard sum and max product algorithms are derivedhfWat and Jordan, 2008).

In contrast, Liu and Ihler [11] propose relaxations of thairiational objective to solve the marginal
MAP probel but their relaxations also require specific caists on the structure of the graphs to
ensure local or global optima (e.g., sum nodes forming 3.tree

Liu and Ihler [11] also proposed a hybrid algorithm similaiours except for one difference: in our
case, a max-product message is sent from a max node to sumindteir case this message is
defined by a set of "mixed-marginals”, which requires sajvam extra local MAP problem.

Another important difference is the way the connection toiEhown. Liu and Ihler [11] do it from
variational principles and derive an EM algorithm whichved their original variational objective
in an alternating fashion for sum and max nodes. In contrestdo so by deriving a “message
passing variant” of the EM algorithm to solve the marginad®problem, and then showing how
the messages in the E and M steps of this algorithm are akimetaessages passed in our hybrid
message passing algorithm.

Establishing the guarantee about convergence [12] of theichynessage-passing algorithm we
describe in this paper is another open issue, and we hopeethtad theoretic developments (e.g.,
[13, 14]) will be able to shed more light on this.
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