Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning

Francis Bach
INRIA - ENS

Eric Moulines
Telecom ParisTech
Stochastic approximation

- **Context:** Large-scale learning ("large \(p \), large \(n \), large \(k \)"")

- **Goal:** Minimizing a function \(f \) defined on a Hilbert space \(\mathcal{H} \)
 - given only unbiased estimates \(f'_n(\theta_n) \) of its gradients \(f'(\theta_n) \) at certain points \(\theta_n \in \mathcal{H} \)

- **Stochastic approximation**
 - Observation of \(f'_n(\theta_n) = f'(\theta_n) + \varepsilon_n \)
 - \(\varepsilon_n \) = additive noise (typically i.i.d.)

- **Machine learning - statistics**
 - \(f_n(\theta) = \ell(\theta, z_n) \) where \(z_n \) is an i.i.d. sequence
 - \(f(\theta) = \mathbb{E} f_n(\theta) \) = generalization error of predictor \(\theta \)
 - Typically \(f_n(\theta) = \frac{1}{2}(\langle x_n, \theta \rangle - y_n)^2 \) or \(\log[1 + \exp(-y_n \langle x_n, \theta \rangle)] \)
Convex stochastic approximation

• Key properties of f and/or f_n
 – Smoothness: f B-Lipschitz continuous, f' L-Lipschitz continuous
 – Strong convexity: f μ-strongly convex

• Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)
 \[
 \theta_n = \theta_{n-1} - \gamma_n f'_n(\theta_{n-1})
 \]
 – Polyak-Ruppert averaging: $\bar{\theta}_n = \frac{1}{n} \sum_{k=0}^{n-1} \theta_k$
 – Which learning rate sequence γ_n? Classical setting: $\gamma_n = Cn^{-\alpha}$

• Desirable practical behavior
 – Applicable (at least) to least-squares and logistic regression
 – Robustness to (potentially unknown) constants (L,B,μ)
 – Adaptivity to difficulty of the problem (e.g., strong convexity)
Summary of new results

• Stochastic gradient descent with learning rate $\gamma_n = Cn^{-\alpha}$

• **Strongly convex smooth objective functions**
 – Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
 – New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
 – Non-asymptotic analysis with explicit constants

• **Non-strongly convex smooth objective functions**
 – Old: $O(n^{-1/2})$ rate achieved with averaging for $\alpha = 1/2$
 – New: $O(\max\{n^{1/2-3\alpha/2}, n^{-\alpha/2}, n^{\alpha-1}\})$ rate achieved without averaging for $\alpha \in [1/3, 1]$

• **Take-home message**
 – Use $\alpha = 1/2$ with averaging to be adaptive to strong convexity