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1 Derivation of the dual formulation of the lasso problem
In this section, we prove that given the primal problem (i.e. the lasso problem),

min
w1,w2,...,wm

1

2
‖x−

m∑
i=1

wibi‖22 + λ

m∑
i=1

|wi|, (1)

the dual problem is

max
θ

1

2
‖x‖22 −

λ2

2
‖θ − x

λ
‖22

s.t. |bTi θ| ≤ 1 ∀i = 1, 2, . . . ,m,

(2)

and that the relationship between the optimal solution w̃i of (1) and the optimal solution θ̃ of (2) is

x =

m∑
i=1

w̃ibi + λθ̃, bTi θ̃ ∈

 {1} if w̃i > 0,
{−1} if w̃i < 0,

[−1, 1] if w̃i = 0.
(3)

To prove this, we consider a more general problem called the nonnegative lasso problem:

min
wi≥0

1

2
‖x−

m∑
i=1

wibi‖22 + λ

m∑
i=1

wi. (4)

It suffices to prove that the dual problem of the nonnegative lasso problem (4) is

max
θ

1

2
‖x‖22 −

λ2

2
‖θ − x

λ
‖22

s.t. bTi θ ≤ 1 ∀i = 1, 2, . . . ,m,

(5)

and that the relationship between the optimal solution w̃i of (4) and the optimal solution θ̃ of (5) is

x =

m∑
i=1

w̃ibi + λθ̃, bTi θ̃ ∈
{

{1} if w̃i > 0,
[−∞, 1] if w̃i = 0.

(6)

Because if we can prove that (5) is the dual problem of (4) via relationship (6). Then for the stan-
dard lasso problem (1) without the nonnegative constraint, we can simply replace the codewords
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{bi} with {±bi} and the weights {wi} with {max{wi, 0},max{−wi, 0}}. This will transform the
standard lasso problem into a nonnegative lasso problem. Applying the results of the nonnegative
lasso problem proves that (2) is the dual problem of (1) via relationship (3).

To derive the dual problem of (4), introduce dummy variable ν with λν = x−
∑m
i=1 wibi and

rewrite the primal problem (4) as:

min
λ2

2
‖ν‖22 + λ

m∑
i=1

wi,

s.t. − wi ≤ 0

x−
m∑
i=1

wibi = λν.

(7)

Apparently, the Slater’s condition holds because a strictly feasible solution exists (for example, set-
tingwi = 1, i = 1, 2, . . . ,m). Therefore we can use the strong duality and the standard optimization
procedure (see [1]). By introducing the Lagrangian multipliers η = (η1, η2, . . . , ηm) and λθ, the
Lagrangian can be written as:

L(w,ν,η,θ) =
λ2

2
‖ν‖22 + λ

m∑
i=1

wi +

m∑
i=1

ηi(−wi) + λθT

(
x−

m∑
i=1

wibi − λν

)
. (8)

Now we solve for the Lagrangian dual function, which is defined as g(η,θ) = infw,ν L(w,ν,η,θ).
Since (8) is a linear function in wi, g(η,θ) is not −∞ only when the coefficient before each wi is
0, i.e., when ηi = λ− λθTbi. And when this is the case,

L(w,ν,η,θ) =
λ2

2
‖ν‖22 + λθT (x− λν) = λ2

2
‖ν − θ‖22 +

1

2
‖x‖22 −

λ2

2
‖θ − x

λ
‖22. (9)

To minimize this we also need ν = θ. Therefore the Lagrange dual function is:

g(η,θ) =

{
1
2‖x‖

2
2 − λ2

2 ‖θ −
x
λ‖

2
2 if ηi = λ− λθTbi,∀i = 1, 2, . . . ,m

−∞ otherwise
(10)

And the dual problem:

max g(η,θ)

s.t. ηi ≥ 0, i = 1, 2, . . . ,m,
(11)

can be equivalently written as

max
θ

1

2
‖x‖22 −

λ2

2
‖θ − x

λ
‖22

s.t. λ(1− θTbi) ≥ 0, i = 1, 2, . . . ,m,

(12)

which is apparently equivalent to (5). The relationship in (6) follows from the optimality condition
ν = θ and applying complementary slackness ηiwi = λ(1−θTbi)wi = 0 on the optimal solutions.

2 Proof of Lemma 1
Lemma 1. If the optimal solution θ̃ of (2) satisfies ‖θ̃ − q‖2 ≤ r, then |bTi q| < (1−r)⇒ wi = 0.
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Proof. Assume that we have |bTi q| < (1− r). According to (3), in order to assert that wi = 0, we
only need to prove that for the optimal solution θ̃ of (2): |bTi θ̃| < 1, which can be proved by:

|bTi θ̃| = |bTi (θ̃ − q) + bTi q|
≤ |bTi (θ̃ − q)|+ |bTi q|
≤ ‖bi‖2‖θ − q‖2 + |bTi q|
< r + (1− r) = 1.

(13)

The first inequality is a simple triangle inequality. The second inequality uses the Cauchy-Schwarz
inequality. The third inequality uses our assumptions ‖θ − q‖2 ≤ r and |bTi q| < (1− r).

3 Proof of Lemma 2
Lemma 2. Given λmax = xTb∗, ‖x‖2 = ‖b∗‖2 = 1. If θ satisfies

(a) ‖θ − x

λ
‖2 ≤

1

λ
− 1

λmax
,

(b) θTb∗ ≤ 1,

then θ must also satisfy

(c) ‖θ − (
x

λ
− (

λmax

λ
− 1)b∗)‖2 ≤

√
1

λ2max
− 1

(
λmax

λ
− 1

)
,

(d) ‖θ − x

λmax
‖2 ≤ 2

√
1

λ2max
− 1

(
λmax

λ
− 1

)
.

Proof. We first prove (c) by

(
1

λ
− 1

λmax
)2 ≥ ‖θ − x

λ
‖22 (by assumption (a))

=‖θ − x

λ
+ (

λmax

λ
− 1)b∗ − (

λmax

λ
− 1)b∗‖22

=‖θ − x

λ
+ (

λmax

λ
− 1)b∗‖22 + ‖(

λmax

λ
− 1)b∗‖22 − 2

(
θ − x

λ
+ (

λmax

λ
− 1)b∗

)T
(
λmax

λ
− 1)b∗

=‖θ − x

λ
+ (

λmax

λ
− 1)b∗‖22 + (

λmax

λ
− 1)2 − 2(

λmax

λ
− 1)

(
θTb∗ −

xTb∗

λ
+ (

λmax

λ
− 1)‖b∗‖22

)
=‖θ − x

λ
+ (

λmax

λ
− 1)b∗‖22 + (

λmax

λ
− 1)2 − 2(

λmax

λ
− 1)

(
θTb∗ −

λmax

λ
+ (

λmax

λ
− 1)

)
=‖θ − x

λ
+ (

λmax

λ
− 1)b∗‖22 + (

λmax

λ
− 1)2 + 2(

λmax

λ
− 1)(1− θTb∗)

≥‖θ − x

λ
+ (

λmax

λ
− 1)b∗‖22 + (

λmax

λ
− 1)2 (by assumption (b)).

This gives us:

‖θ − x

λ
+ (

λmax

λ
− 1)b∗‖22 ≤

√
(
1

λ
− 1

λmax
)2 − (

λmax

λ
− 1)2 =

√
1

λ2max
− 1

(
λmax

λ
− 1

)
,

(14)
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which is (c). To prove (d), we first prove an intermediate result:

‖x
λ
− (

λmax

λ
− 1)b∗ −

x

λmax
‖2 =

√
1

λ2max
− 1

(
λmax

λ
− 1

)
. (15)

This can be proved by

‖x
λ
− (

λmax

λ
− 1)b∗ −

x

λmax
‖22

=‖x
λ
− x

λmax
‖22 + ‖(

λmax

λ
− 1)b∗‖22 − 2

(
x

λ
− x

λmax

)T
(
λmax

λ
− 1)b∗

=(
1

λ
− 1

λmax
)2‖x‖22 + (

λmax

λ
− 1)2‖b∗‖22 − 2

(
1

λ
− 1

λmax

)
(
λmax

λ
− 1)xTb∗

=(
1

λ
− 1

λmax
)2 + (

λmax

λ
− 1)2 − 2

(
1

λ
− 1

λmax

)
(
λmax

λ
− 1)λmax =

(
1

λ2max
− 1

)(
λmax

λ
− 1

)2

,

which is the square of (15). With (c) and (15), (d) can be proved by a simple triangle inequality:

‖θ − x

λmax
‖2 ≤‖θ −

x

λ
+ (

λmax

λ
− 1)b∗‖2 + ‖

x

λ
− (

λmax

λ
− 1)b∗ −

x

λmax
‖2

≤

√
1

λ2max
− 1

(
λmax

λ
− 1

)
+

√
1

λ2max
− 1

(
λmax

λ
− 1

)

=2

√
1

λ2max
− 1

(
λmax

λ
− 1

)
.

(16)

4 Proof of Lemma 3
Lemma 3. When λmax >

√
3/2, if ST1/SAFE discards bi, then ST2 also discards bi.

Proof. If ST1/SAFE discards bi, then we must have 0 ≤ |xTbi| < λ − 1 + λ/λmax. In order to
prove that ST2 also discards bi, we only need to prove the following inequality:

λ− 1 +
λ

λmax
< λmax

(
1− 2

√
1

λ2max
− 1

(
λmax

λ
− 1

))
. (17)

We calculate the difference of the two sides in (17):

R.H.S. of (17)− L.H.S. of (17)

=λmax

(
1− 2

√
1

λ2max
− 1

(
λmax

λ
− 1

))
− (λ− 1 +

λ

λmax
)

=λmax − 2
√
1− λ2max(

λmax
λ
− 1)− (λ− 1 +

λ

λmax
)

=

(
λmax − λ
λmaxλ

)(
λ− 2λmax

√
1− λmax
1 + λmax

)
(18)
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We need to prove that this is positive. We have already known that λmax > λ. From 0 < λ −
1 + λ/λmax we know that λ > λmax

λmax+1 . When λ >
√
3/2 we have λmax

λmax+1 > 2λmax

√
1−λmax

1+λmax
.

Therefore λ > λmax

λmax+1 > 2λmax

√
1−λmax

1+λmax
. So by (18) the R.H.S of (17) is indeed greater than the

L.H.S. of (17).

5 Proof of Lemma 4
Lemma 4. Given any x,b∗ and λ, if ST2 discards bi, then ST3 also discards bi.

Proof. If ST2 discards bi, then we have

|xTbi| < λmax

(
1− 2

√
1

λ2max
− 1

(
λmax

λ
− 1

))
. (19)

We can prove that bi also satisfies the discarding criteria of ST3:

|xTbi − (λmax − λ)bT∗ bi|

=λ

∣∣∣∣xTbiλ
− (

λmax

λ
− 1)bT∗ bi −

xTbi
λmax

+
xTbi
λmax

∣∣∣∣
≤λ
(∣∣∣∣xTbiλ

− (
λmax

λ
− 1)bT∗ bi −

xTbi
λmax

∣∣∣∣+ ∣∣∣∣xTbiλmax

∣∣∣∣)
≤λ
(
‖x

T

λ
− (

λmax

λ
− 1)b∗ −

xT

λmax
‖2‖bi‖2 +

∣∣∣∣xTbiλmax

∣∣∣∣)
<λ

(√
1

λ2max
− 1

(
λmax

λ
− 1

)
+ 1− 2

√
1

λ2max
− 1

(
λmax

λ
− 1

))

=λ

(
1−

√
1

λ2max
− 1

(
λmax

λ
− 1

))

(20)

The first inequality is a simple triangle inequality. The second inequality uses the Cauchy-Schwarz
inequality. The third inequality uses the intermediate result (15) in proving Lemma 2, ‖bi‖2 = 1,
and (19).

6 Proof of Theorem 2
Theorem 2. Assume thatX satisfies SI and has a κ-sparse representation using dictionary B. Then
the projected data T (X ) satisfies SI if

(2κ− 1)M(TB) < 1, (21)

where M(·) is the mutual coherence of a matrix.

Proof. If T (X ) doesn’t satisfy SI, then there exists (x1,x2) ∈ X × X and γ /∈ {0, 1} so that
Tx1 = γTx2. Let x1 = Bw1 and x2 = Bw2. We have TB(w1 − γw2) = 0. Both w1 and
w2 are κ sparse so (w1 − γw2) is at most 2κ sparse and nonzero (otherwise contradicting with
the SI property of X ). However, it’s well know that the minimum l0-norm of vectors in the null
space of TB (i.e. the “spark” of TB) is lower bounded by 1 + 1/M(TB) (Lemma 2.1, [2]). So,
2κ ≥ ‖w1 − γw2‖0 ≥ 1 + 1/M(TB), contradicting (21). Therefore T (X ) satisfies SI.
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7 Proof of Theorem 3
Theorem 3. Let the data points lie on a K-dimensional Riemannian submanifold X ⊂ Rp that
is compact, has volume V , conditional number 1/τ , and geodesic covering regularity R (see [3]).
Assume that in the optimal solution of the sparse representation problem for the projected data:

min
B,W

1

2
‖TX−BW‖2F + λ‖W‖1

s.t. ‖bi‖22 ≤ 1, ∀i = 1, 2, . . . ,m,

(22)

data points Tx1 and Tx2 have nonzero weights on the same set of κ codewords. Let wj be the
new representation of xj and µi = ‖Txj −Bwj‖2 be the length of the residual (j = 1, 2). With
probability 1− ρ:

‖x1 − x2‖22 ≤
p

d
(1 + ε1)(1 + ε2)(‖w1 −w2‖22 + 2µ2

1 + 2µ2
2)

‖x1 − x2‖22 ≥
p

d
(1− ε1)(1− ε2)(‖w1 −w2‖22,

with ε1 = O((K ln(NVRτ−1) ln(1/ρ)
d )0.5−η) (for any small η > 0) and ε2 = (κ− 1)M(B).

Proof. Using Theorem 3.1 in [3] on random projection T and the simple fact that ∀ε < 0.2 :

(1− ε)2 ≥ 1
1+3ε , (1 + ε)2 ≤ 1

1−3ε , for d = O(K ln(NVRτ−1ε−1) ln(1/ρ)
ε2 ), with probability 1− ρ:

1

(1 + 3ε)

d

p
≤ (1− ε)2 d

p
≤ ‖Tx1 −Tx2‖22
‖x1 − x2‖22

≤ (1 + ε)2
d

p
≤ 1

(1− 3ε)

d

p
(23)

To bound ‖Tx1 −Tx2‖22, let bi be a codeword in B that has nonzero weight, by (3) (Tx1 −
Bw1)

Tbi = (Tx2 −Bw2)
Tbi = λ signwi. So (Tx1 −Bw1)− (Tx2 −Bw2) is orthogonal to

any codewords bi that has nonzero weight, and therefore is orthogonal to B(w1 −w2). Thus:

‖Tx1 −Tx2‖22 = ‖B(w1 −w2)‖22 + ‖T(x1 − x2)−B(w1 −w2)‖22 (24)

Using (24) and the fact that any singular value σ of B satisfies 1− (κ− 1)M(B) ≤ σ2 ≤ 1 + (κ−
1)M(B) (Proposition 4.3, [4]), we can upper bound and lower bound ‖Tx1 −Tx2‖22 by:

‖Tx1 −Tx2‖22 ≤ ‖B(w1 −w2)‖22 + 2(‖Tx1 −Bw1‖22 + ‖Tx2 −Bw2‖22)
= ‖B(w1 −w2)‖22 + 2µ2

1 + 2µ2
2 ≤ (1 + ε2)‖w1 −w2‖22 + 2µ2

1 + 2µ2
2

‖Tx1 −Tx2‖22 ≥ ‖B(w1 −w2)‖22 ≥ (1− ε2)‖w1 −w2‖22

(25)

Plug these into (23) gives us the desired bounds with ε1 = 3ε and by d = O(K ln(NVRτ−1ε−1) ln(1/ρ)
ε2 ),

ε1 = O((K ln(NVRτ−1) ln(1/ρ)
d )0.5−η) for any small η > 0.
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