Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries (Supplemental Material)

1 Derivation of the dual formulation of the lasso problem

In this section, we prove that given the primal problem (i.e. the lasso problem),

$$
\min_{w_1, w_2, \dots, w_m} \qquad \frac{1}{2} \|\mathbf{x} - \sum_{i=1}^m w_i \mathbf{b}_i\|_2^2 + \lambda \sum_{i=1}^m |w_i|,\tag{1}
$$

the dual problem is

$$
\max_{\theta} \qquad \frac{1}{2} \|\mathbf{x}\|_2^2 - \frac{\lambda^2}{2} \|\theta - \frac{\mathbf{x}}{\lambda}\|_2^2
$$

s.t. $|\mathbf{b}_i^T \theta| \le 1 \quad \forall i = 1, 2, ..., m,$ (2)

and that the relationship between the optimal solution \tilde{w}_i of [\(1\)](#page-0-0) and the optimal solution $\tilde{\theta}$ of [\(2\)](#page-0-1) is

$$
\mathbf{x} = \sum_{i=1}^{m} \tilde{w}_i \mathbf{b}_i + \lambda \tilde{\boldsymbol{\theta}}, \qquad \mathbf{b}_i^T \tilde{\boldsymbol{\theta}} \in \left\{ \begin{array}{ll} \{1\} & \text{if } \tilde{w}_i > 0, \\ \{-1\} & \text{if } \tilde{w}_i < 0, \\ [-1, 1] & \text{if } \tilde{w}_i = 0. \end{array} \right. \tag{3}
$$

To prove this, we consider a more general problem called the nonnegative lasso problem:

$$
\min_{w_i \ge 0} \qquad \frac{1}{2} \|\mathbf{x} - \sum_{i=1}^m w_i \mathbf{b}_i\|_2^2 + \lambda \sum_{i=1}^m w_i.
$$
 (4)

It suffices to prove that the dual problem of the nonnegative lasso problem [\(4\)](#page-0-2) is

$$
\max_{\theta} \qquad \frac{1}{2} \|\mathbf{x}\|_{2}^{2} - \frac{\lambda^{2}}{2} \|\theta - \frac{\mathbf{x}}{\lambda}\|_{2}^{2}
$$
\n
$$
\text{s.t.} \qquad \mathbf{b}_{i}^{T} \theta \le 1 \quad \forall i = 1, 2, \dots, m,
$$
\n
$$
(5)
$$

and that the relationship between the optimal solution \tilde{w}_i of [\(4\)](#page-0-2) and the optimal solution $\tilde{\theta}$ of [\(5\)](#page-0-3) is

$$
\mathbf{x} = \sum_{i=1}^{m} \tilde{w}_i \mathbf{b}_i + \lambda \tilde{\boldsymbol{\theta}}, \qquad \mathbf{b}_i^T \tilde{\boldsymbol{\theta}} \in \left\{ \begin{array}{ll} \{1\} & \text{if } \tilde{w}_i > 0, \\ [-\infty, 1] & \text{if } \tilde{w}_i = 0. \end{array} \right. \tag{6}
$$

Because if we can prove that [\(5\)](#page-0-3) is the dual problem of [\(4\)](#page-0-2) via relationship [\(6\)](#page-0-4). Then for the standard lasso problem [\(1\)](#page-0-0) without the nonnegative constraint, we can simply replace the codewords

 ${b_i}$ with ${\pm b_i}$ and the weights ${w_i}$ with ${\max\{w_i, 0\}}$, $\max\{-w_i, 0\}$. This will transform the standard lasso problem into a nonnegative lasso problem. Applying the results of the nonnegative lasso problem proves that [\(2\)](#page-0-1) is the dual problem of [\(1\)](#page-0-0) via relationship [\(3\)](#page-0-5).

To derive the dual problem of [\(4\)](#page-0-2), introduce dummy variable ν with $\lambda \nu = \mathbf{x} - \sum_{i=1}^{m} w_i \mathbf{b}_i$ and rewrite the primal problem [\(4\)](#page-0-2) as:

$$
\min \frac{\lambda^2}{2} ||\boldsymbol{\nu}||_2^2 + \lambda \sum_{i=1}^m w_i,
$$
\n
$$
\text{s.t.} \quad -w_i \le 0
$$
\n
$$
\mathbf{x} - \sum_{i=1}^m w_i \mathbf{b}_i = \lambda \boldsymbol{\nu}.
$$
\n(7)

Apparently, the Slater's condition holds because a strictly feasible solution exists (for example, setting $w_i = 1, i = 1, 2, \dots, m$. Therefore we can use the strong duality and the standard optimization procedure (see [\[1\]](#page-5-0)). By introducing the Lagrangian multipliers $\eta = (\eta_1, \eta_2, \dots, \eta_m)$ and $\lambda \theta$, the Lagrangian can be written as:

$$
L(\mathbf{w}, \boldsymbol{\nu}, \boldsymbol{\eta}, \boldsymbol{\theta}) = \frac{\lambda^2}{2} ||\boldsymbol{\nu}||_2^2 + \lambda \sum_{i=1}^m w_i + \sum_{i=1}^m \eta_i(-w_i) + \lambda \boldsymbol{\theta}^T \left(\mathbf{x} - \sum_{i=1}^m w_i \mathbf{b}_i - \lambda \boldsymbol{\nu}\right).
$$
 (8)

Now we solve for the Lagrangian dual function, which is defined as $g(\eta, \theta) = \inf_{w, \nu} L(w, \nu, \eta, \theta)$. Since [\(8\)](#page-1-0) is a linear function in w_i , $g(\eta, \theta)$ is not $-\infty$ only when the coefficient before each w_i is 0, i.e., when $\eta_i = \lambda - \lambda \theta^T \mathbf{b}_i$. And when this is the case,

$$
L(\mathbf{w}, \nu, \eta, \theta) = \frac{\lambda^2}{2} ||\nu||_2^2 + \lambda \theta^T (\mathbf{x} - \lambda \nu) = \frac{\lambda^2}{2} ||\nu - \theta||_2^2 + \frac{1}{2} ||\mathbf{x}||_2^2 - \frac{\lambda^2}{2} ||\theta - \frac{\mathbf{x}}{\lambda}||_2^2.
$$
 (9)

To minimize this we also need $\nu = \theta$. Therefore the Lagrange dual function is:

$$
g(\boldsymbol{\eta}, \boldsymbol{\theta}) = \begin{cases} \frac{1}{2} ||\mathbf{x}||_2^2 - \frac{\lambda^2}{2} ||\boldsymbol{\theta} - \frac{\mathbf{x}}{\lambda}||_2^2 & \text{if } \eta_i = \lambda - \lambda \boldsymbol{\theta}^T \mathbf{b}_i, \forall i = 1, 2, \dots, m \\ -\infty & \text{otherwise} \end{cases}
$$
(10)

And the dual problem:

$$
\begin{array}{ll}\n\max & g(\boldsymbol{\eta}, \boldsymbol{\theta}) \\
\text{s.t.} & \eta_i \ge 0, i = 1, 2, \dots, m,\n\end{array} \n\tag{11}
$$

can be equivalently written as

$$
\max_{\boldsymbol{\theta}} \quad \frac{1}{2} \|\mathbf{x}\|_2^2 - \frac{\lambda^2}{2} \|\boldsymbol{\theta} - \frac{\mathbf{x}}{\lambda}\|_2^2
$$
\n
$$
\text{s.t.} \quad \lambda(1 - \boldsymbol{\theta}^T \mathbf{b}_i) \ge 0, i = 1, 2, \dots, m,
$$
\n
$$
(12)
$$

which is apparently equivalent to [\(5\)](#page-0-3). The relationship in [\(6\)](#page-0-4) follows from the optimality condition $\nu = \theta$ and applying complementary slackness $\eta_i w_i = \lambda (1 - \theta^T \mathbf{b}_i) w_i = 0$ on the optimal solutions.

2 Proof of Lemma 1

Lemma 1. If the optimal solution $\tilde{\boldsymbol{\theta}}$ of [\(2\)](#page-0-1) satisfies $\|\tilde{\boldsymbol{\theta}} - \mathbf{q}\|_2 \leq r$, then $|\mathbf{b}_i^T\mathbf{q}| < (1-r) \Rightarrow w_i = 0$.

Proof. Assume that we have $|\mathbf{b}_i^T \mathbf{q}| < (1 - r)$. According to [\(3\)](#page-0-5), in order to assert that $w_i = 0$, we only need to prove that for the optimal solution $\tilde{\theta}$ of [\(2\)](#page-0-1): $|\mathbf{b}_i^T \tilde{\theta}| < 1$, which can be proved by:

$$
|\mathbf{b}_i^T \tilde{\boldsymbol{\theta}}| = |\mathbf{b}_i^T (\tilde{\boldsymbol{\theta}} - \mathbf{q}) + \mathbf{b}_i^T \mathbf{q}|
$$

\n
$$
\leq |\mathbf{b}_i^T (\tilde{\boldsymbol{\theta}} - \mathbf{q})| + |\mathbf{b}_i^T \mathbf{q}|
$$

\n
$$
\leq ||\mathbf{b}_i||_2 ||\boldsymbol{\theta} - \mathbf{q}||_2 + |\mathbf{b}_i^T \mathbf{q}|
$$

\n
$$
< r + (1 - r) = 1.
$$
 (13)

The first inequality is a simple triangle inequality. The second inequality uses the Cauchy-Schwarz inequality. The third inequality uses our assumptions $\|\boldsymbol{\theta} - \mathbf{q}\|_2 \leq r$ and $|\mathbf{b}_i^T \mathbf{q}| < (1 - r)$. \Box

3 Proof of Lemma 2

Lemma 2. *Given* $\lambda_{\text{max}} = \mathbf{x}^T \mathbf{b}_*$, $\|\mathbf{x}\|_2 = \|\mathbf{b}_*\|_2 = 1$. If $\boldsymbol{\theta}$ satisfies

(a)
$$
\|\boldsymbol{\theta} - \frac{\mathbf{x}}{\lambda}\|_2 \le \frac{1}{\lambda} - \frac{1}{\lambda_{max}},
$$

(b) $\boldsymbol{\theta}^T \mathbf{b}_* \le 1,$

then θ *must also satisfy*

(c)
$$
\|\boldsymbol{\theta} - (\frac{\mathbf{x}}{\lambda} - (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_*)\|_2 \le \sqrt{\frac{1}{\lambda_{max}^2} - 1} \left(\frac{\lambda_{\max}}{\lambda} - 1\right),
$$

(d)
$$
\|\boldsymbol{\theta} - \frac{\mathbf{x}}{\lambda_{\max}}\|_2 \le 2\sqrt{\frac{1}{\lambda_{max}^2} - 1} \left(\frac{\lambda_{\max}}{\lambda} - 1\right).
$$

Proof. We first prove (c) by

$$
(\frac{1}{\lambda} - \frac{1}{\lambda_{\max}})^2 \ge ||\boldsymbol{\theta} - \frac{\mathbf{x}}{\lambda}||_2^2 \qquad \text{(by assumption (a))}
$$
\n
$$
= ||\boldsymbol{\theta} - \frac{\mathbf{x}}{\lambda} + (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_* - (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_*||_2^2
$$
\n
$$
= ||\boldsymbol{\theta} - \frac{\mathbf{x}}{\lambda} + (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_*||_2^2 + ||(\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_*||_2^2 - 2\left(\boldsymbol{\theta} - \frac{\mathbf{x}}{\lambda} + (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_*\right)^T (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_* - ||\boldsymbol{\theta} - \frac{\mathbf{x}}{\lambda} + (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_*||_2^2 + (\frac{\lambda_{\max}}{\lambda} - 1)^2 - 2(\frac{\lambda_{\max}}{\lambda} - 1)\left(\boldsymbol{\theta}^T \mathbf{b}_* - \frac{\mathbf{x}^T \mathbf{b}_*}{\lambda} + (\frac{\lambda_{\max}}{\lambda} - 1)||\mathbf{b}_*||_2^2\right)
$$
\n
$$
= ||\boldsymbol{\theta} - \frac{\mathbf{x}}{\lambda} + (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_*||_2^2 + (\frac{\lambda_{\max}}{\lambda} - 1)^2 - 2(\frac{\lambda_{\max}}{\lambda} - 1)\left(\boldsymbol{\theta}^T \mathbf{b}_* - \frac{\lambda_{\max}}{\lambda} + (\frac{\lambda_{\max}}{\lambda} - 1)\right)
$$
\n
$$
= ||\boldsymbol{\theta} - \frac{\mathbf{x}}{\lambda} + (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_*||_2^2 + (\frac{\lambda_{\max}}{\lambda} - 1)^2 + 2(\frac{\lambda_{\max}}{\lambda} - 1)(1 - \boldsymbol{\theta}^T \mathbf{b}_*)
$$
\n
$$
\ge ||\boldsymbol{\theta} - \frac{\mathbf{x}}{\lambda} + (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_*||_2^2 + (\frac{\lambda_{\max}}{\lambda} - 1)^2 \qquad \text{(
$$

This gives us:

$$
\|\boldsymbol{\theta} - \frac{\mathbf{x}}{\lambda} + (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_*\|_2^2 \le \sqrt{(\frac{1}{\lambda} - \frac{1}{\lambda_{\max}})^2 - (\frac{\lambda_{\max}}{\lambda} - 1)^2} = \sqrt{\frac{1}{\lambda_{\max}^2} - 1} \left(\frac{\lambda_{\max}}{\lambda} - 1\right),\tag{14}
$$

which is (c). To prove (d), we first prove an intermediate result:

$$
\|\frac{\mathbf{x}}{\lambda} - (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_* - \frac{\mathbf{x}}{\lambda_{\max}}\|_2 = \sqrt{\frac{1}{\lambda_{max}^2} - 1} \left(\frac{\lambda_{\max}}{\lambda} - 1\right). \tag{15}
$$

This can be proved by

$$
\|\frac{\mathbf{x}}{\lambda} - (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_{*} - \frac{\mathbf{x}}{\lambda_{\max}}\|_{2}^{2}
$$
\n
$$
= \|\frac{\mathbf{x}}{\lambda} - \frac{\mathbf{x}}{\lambda_{\max}}\|_{2}^{2} + \|(\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_{*}\|_{2}^{2} - 2\left(\frac{\mathbf{x}}{\lambda} - \frac{\mathbf{x}}{\lambda_{\max}}\right)^{T} (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_{*}
$$
\n
$$
= (\frac{1}{\lambda} - \frac{1}{\lambda_{\max}})^{2} \|\mathbf{x}\|_{2}^{2} + (\frac{\lambda_{\max}}{\lambda} - 1)^{2} \|\mathbf{b}_{*}\|_{2}^{2} - 2\left(\frac{1}{\lambda} - \frac{1}{\lambda_{\max}}\right) (\frac{\lambda_{\max}}{\lambda} - 1) \mathbf{x}^{T} \mathbf{b}_{*}
$$
\n
$$
= (\frac{1}{\lambda} - \frac{1}{\lambda_{\max}})^{2} + (\frac{\lambda_{\max}}{\lambda} - 1)^{2} - 2\left(\frac{1}{\lambda} - \frac{1}{\lambda_{\max}}\right) (\frac{\lambda_{\max}}{\lambda} - 1)\lambda_{\max} = \left(\frac{1}{\lambda_{\max}^{2}} - 1\right) \left(\frac{\lambda_{\max}}{\lambda} - 1\right)^{2},
$$

which is the square of [\(15\)](#page-3-0). With (c) and (15), (d) can be proved by a simple triangle inequality:

$$
\|\boldsymbol{\theta} - \frac{\mathbf{x}}{\lambda_{\max}}\|_{2} \leq \|\boldsymbol{\theta} - \frac{\mathbf{x}}{\lambda} + (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_{*}\|_{2} + \|\frac{\mathbf{x}}{\lambda} - (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_{*} - \frac{\mathbf{x}}{\lambda_{\max}}\|_{2}
$$

\n
$$
\leq \sqrt{\frac{1}{\lambda_{max}^{2}} - 1} \left(\frac{\lambda_{\max}}{\lambda} - 1\right) + \sqrt{\frac{1}{\lambda_{max}^{2}} - 1} \left(\frac{\lambda_{\max}}{\lambda} - 1\right)
$$
(16)
\n
$$
= 2\sqrt{\frac{1}{\lambda_{max}^{2}} - 1} \left(\frac{\lambda_{\max}}{\lambda} - 1\right).
$$

 \Box

4 Proof of Lemma 3

Lemma 3. *When* λ_{max} > √ $3/2$, if ST1/SAFE discards \mathbf{b}_i , then ST2 also discards \mathbf{b}_i .

Proof. If ST1/SAFE discards \mathbf{b}_i , then we must have $0 \leq |\mathbf{x}^T \mathbf{b}_i| < \lambda - 1 + \lambda/\lambda_{max}$. In order to prove that ST2 also discards \mathbf{b}_i , we only need to prove the following inequality:

$$
\lambda - 1 + \frac{\lambda}{\lambda_{max}} < \lambda_{max} \left(1 - 2\sqrt{\frac{1}{\lambda_{max}^2} - 1} \left(\frac{\lambda_{max}}{\lambda} - 1 \right) \right). \tag{17}
$$

We calculate the difference of the two sides in (17) :

R.H.S. of (17) – L.H.S. of (17)
\n
$$
= \lambda_{max} \left(1 - 2\sqrt{\frac{1}{\lambda_{max}^2} - 1} \left(\frac{\lambda_{max}}{\lambda} - 1 \right) \right) - (\lambda - 1 + \frac{\lambda}{\lambda_{max}})
$$
\n
$$
= \lambda_{max} - 2\sqrt{1 - \lambda_{max}^2} \left(\frac{\lambda_{max}}{\lambda} - 1 \right) - (\lambda - 1 + \frac{\lambda}{\lambda_{max}})
$$
\n
$$
= \left(\frac{\lambda_{max} - \lambda}{\lambda_{max}} \right) \left(\lambda - 2\lambda_{max} \sqrt{\frac{1 - \lambda_{max}}{1 + \lambda_{max}}} \right)
$$
\n(18)

We need to prove that this is positive. We have already known that $\lambda_{\text{max}} > \lambda$. From $0 < \lambda$ – 1 + λ/λ_{max} we know that $\lambda > \frac{\lambda_{max}}{\lambda_{max}+1}$. When $\lambda > \sqrt{3}/2$ we have $\frac{\lambda_{max}}{\lambda_{max}+1} > 2\lambda_{max}\sqrt{\frac{1-\lambda_{max}}{1+\lambda_{max}}}$. Therefore $\lambda > \frac{\lambda_{max}}{\lambda_{max}+1} > 2\lambda_{max}\sqrt{\frac{1-\lambda_{max}}{1+\lambda_{max}}}$. So by [\(18\)](#page-3-2) the R.H.S of [\(17\)](#page-3-1) is indeed greater than the L.H.S. of [\(17\)](#page-3-1). \Box

5 Proof of Lemma 4

Lemma 4. *Given any* x , b _{*} *and* λ , *if ST2 discards* b_i , *then ST3 also discards* b_i .

Proof. If ST2 discards \mathbf{b}_i , then we have

$$
|\mathbf{x}^T \mathbf{b}_i| < \lambda_{\max} \left(1 - 2\sqrt{\frac{1}{\lambda_{max}^2} - 1} \left(\frac{\lambda_{\max}}{\lambda} - 1 \right) \right). \tag{19}
$$

We can prove that \mathbf{b}_i also satisfies the discarding criteria of ST3:

$$
|\mathbf{x}^{T}\mathbf{b}_{i} - (\lambda_{\max} - \lambda)\mathbf{b}_{*}^{T}\mathbf{b}_{i}|
$$

\n
$$
= \lambda \left| \frac{\mathbf{x}^{T}\mathbf{b}_{i}}{\lambda} - (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_{*}^{T}\mathbf{b}_{i} - \frac{\mathbf{x}^{T}\mathbf{b}_{i}}{\lambda_{\max}} + \frac{\mathbf{x}^{T}\mathbf{b}_{i}}{\lambda_{\max}} \right|
$$

\n
$$
\leq \lambda \left(\left| \frac{\mathbf{x}^{T}\mathbf{b}_{i}}{\lambda} - (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_{*}^{T}\mathbf{b}_{i} - \frac{\mathbf{x}^{T}\mathbf{b}_{i}}{\lambda_{\max}} \right| + \left| \frac{\mathbf{x}^{T}\mathbf{b}_{i}}{\lambda_{\max}} \right| \right)
$$

\n
$$
\leq \lambda \left(\left| \frac{\mathbf{x}^{T}}{\lambda} - (\frac{\lambda_{\max}}{\lambda} - 1)\mathbf{b}_{*} - \frac{\mathbf{x}^{T}}{\lambda_{\max}} ||_{2} ||\mathbf{b}_{i}||_{2} + \left| \frac{\mathbf{x}^{T}\mathbf{b}_{i}}{\lambda_{\max}} \right| \right)
$$

\n
$$
< \lambda \left(\sqrt{\frac{1}{\lambda_{\max}^{2}} - 1} \left(\frac{\lambda_{\max}}{\lambda} - 1 \right) + 1 - 2\sqrt{\frac{1}{\lambda_{\max}^{2}} - 1} \left(\frac{\lambda_{\max}}{\lambda} - 1 \right) \right)
$$

\n
$$
= \lambda \left(1 - \sqrt{\frac{1}{\lambda_{\max}^{2}} - 1} \left(\frac{\lambda_{\max}}{\lambda} - 1 \right) \right)
$$
 (20)

The first inequality is a simple triangle inequality. The second inequality uses the Cauchy-Schwarz inequality. The third inequality uses the intermediate result [\(15\)](#page-3-0) in proving Lemma 2, $\|\mathbf{b}_i\|_2 = 1$, \Box and [\(19\)](#page-4-0).

6 Proof of Theorem 2

Theorem 2. *Assume that* X *satisfies SI and has a* κ*-sparse representation using dictionary* B*. Then the projected data* $T(X)$ *satisfies SI if*

$$
(2\kappa - 1)M(\mathbf{T}\mathbf{B}) < 1,\tag{21}
$$

where $M(\cdot)$ *is the mutual coherence of a matrix.*

Proof. If $T(\mathcal{X})$ doesn't satisfy SI, then there exists $(\mathbf{x}_1, \mathbf{x}_2) \in \mathcal{X} \times \mathcal{X}$ and $\gamma \notin \{0, 1\}$ so that $\mathbf{Tx}_1 = \gamma \mathbf{Tx}_2$. Let $\mathbf{x}_1 = \mathbf{Bw}_1$ and $\mathbf{x}_2 = \mathbf{Bw}_2$. We have $\mathbf{TB}(\mathbf{w}_1 - \gamma \mathbf{w}_2) = 0$. Both \mathbf{w}_1 and w_2 are κ sparse so $(w_1 - \gamma w_2)$ is at most 2κ sparse and nonzero (otherwise contradicting with the SI property of \mathcal{X}). However, it's well know that the minimum l_0 -norm of vectors in the null space of TB (i.e. the "spark" of TB) is lower bounded by $1 + 1/M(TB)$ (Lemma 2.1, [\[2\]](#page-5-1)). So, $2\kappa \ge ||\mathbf{w}_1 - \gamma \mathbf{w}_2||_0 \ge 1 + 1/M(\mathbf{T}\mathbf{B})$, contradicting [\(21\)](#page-4-1). Therefore $T(\mathcal{X})$ satisfies SI. \Box

7 Proof of Theorem 3

Theorem 3. Let the data points lie on a K-dimensional Riemannian submanifold $X \subset \mathbb{R}^p$ that *is compact, has volume* V, *conditional number* $1/\tau$ *, and geodesic covering regularity* R *(see [\[3\]](#page-5-2)). Assume that in the optimal solution of the sparse representation problem for the projected data:*

$$
\min_{\mathbf{B}, \mathbf{W}} \quad \frac{1}{2} \|\mathbf{T} \mathbf{X} - \mathbf{B} \mathbf{W}\|_{F}^{2} + \lambda \|\mathbf{W}\|_{1}
$$
\n
$$
\text{s.t.} \quad \|\mathbf{b}_{i}\|_{2}^{2} \leq 1, \quad \forall i = 1, 2, \dots, m,
$$
\n
$$
(22)
$$

data points Tx_1 *and* Tx_2 *have nonzero weights on the same set of* κ *codewords. Let* w_j *be the new representation of* \mathbf{x}_i *and* $\mu_i = ||\mathbf{T}\mathbf{x}_i - \mathbf{B}\mathbf{w}_i||_2$ *be the length of the residual* (*j* = 1, 2). With *probability* $1 - \rho$ *:*

$$
\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2 \le \frac{p}{d}(1 + \epsilon_1)(1 + \epsilon_2)(\|\mathbf{w}_1 - \mathbf{w}_2\|_2^2 + 2\mu_1^2 + 2\mu_2^2)
$$

$$
\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2 \ge \frac{p}{d}(1 - \epsilon_1)(1 - \epsilon_2)(\|\mathbf{w}_1 - \mathbf{w}_2\|_2^2,
$$

with $\epsilon_1 = O((\frac{K \ln(NVR\tau^{-1}) \ln(1/\rho)}{d})$ $\frac{d\tau^{-1}(\ln(1/\rho))}{d}$ ^{0.5-η}) (for any small $\eta > 0$) and $\epsilon_2 = (\kappa - 1)M(\mathbf{B})$.

Proof. Using Theorem 3.1 in [\[3\]](#page-5-2) on random projection T and the simple fact that $\forall \epsilon < 0.2$: $(1-\epsilon)^2 \geq \frac{1}{1+3\epsilon}$, $(1+\epsilon)^2 \leq \frac{1}{1-3\epsilon}$, for $d = O(\frac{K\ln(NVR\tau^{-1}\epsilon^{-1})\ln(1/\rho)}{\epsilon^2})$ $\frac{\epsilon}{\epsilon^2}$) $\frac{\ln(1/\rho)}{\rho}$, with probability $1 - \rho$:

$$
\frac{1}{(1+3\epsilon)}\frac{d}{p} \le (1-\epsilon)^2 \frac{d}{p} \le \frac{\|\mathbf{T}\mathbf{x}_1 - \mathbf{T}\mathbf{x}_2\|_2^2}{\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2} \le (1+\epsilon)^2 \frac{d}{p} \le \frac{1}{(1-3\epsilon)}\frac{d}{p} \tag{23}
$$

To bound $||Tx_1 - Tx_2||_2^2$, let b_i be a codeword in B that has nonzero weight, by [\(3\)](#page-0-5) (Tx_1 – $(\mathbf{B}\mathbf{w}_1)^T\mathbf{b}_i = (\mathbf{T}\mathbf{x}_2 - \mathbf{B}\mathbf{w}_2)^T\mathbf{b}_i = \lambda \operatorname{sign} w_i$. So $(\mathbf{T}\mathbf{x}_1 - \mathbf{B}\mathbf{w}_1) - (\mathbf{T}\mathbf{x}_2 - \mathbf{B}\mathbf{w}_2)$ is orthogonal to any codewords \mathbf{b}_i that has nonzero weight, and therefore is orthogonal to $\mathbf{B}(\mathbf{w}_1 - \mathbf{w}_2)$. Thus:

$$
\|\mathbf{T}\mathbf{x}_1 - \mathbf{T}\mathbf{x}_2\|_2^2 = \|\mathbf{B}(\mathbf{w}_1 - \mathbf{w}_2)\|_2^2 + \|\mathbf{T}(\mathbf{x}_1 - \mathbf{x}_2) - \mathbf{B}(\mathbf{w}_1 - \mathbf{w}_2)\|_2^2
$$
 (24)

Using [\(24\)](#page-5-3) and the fact that any singular value σ of **B** satisfies $1 - (\kappa - 1)M(\mathbf{B}) \le \sigma^2 \le 1 + (\kappa - 1)M(\mathbf{B})$ 1) $M(\mathbf{B})$ (Proposition 4.3, [\[4\]](#page-5-4)), we can upper bound and lower bound $\|\mathbf{T}\mathbf{x}_1 - \mathbf{T}\mathbf{x}_2\|_2^2$ by:

$$
\|\mathbf{T}\mathbf{x}_1 - \mathbf{T}\mathbf{x}_2\|_2^2 \le \|\mathbf{B}(\mathbf{w}_1 - \mathbf{w}_2)\|_2^2 + 2(\|\mathbf{T}\mathbf{x}_1 - \mathbf{B}\mathbf{w}_1\|_2^2 + \|\mathbf{T}\mathbf{x}_2 - \mathbf{B}\mathbf{w}_2\|_2^2)
$$

\n
$$
= \|\mathbf{B}(\mathbf{w}_1 - \mathbf{w}_2)\|_2^2 + 2\mu_1^2 + 2\mu_2^2 \le (1 + \epsilon_2) \|\mathbf{w}_1 - \mathbf{w}_2\|_2^2 + 2\mu_1^2 + 2\mu_2^2 \quad (25)
$$

\n
$$
\|\mathbf{T}\mathbf{x}_1 - \mathbf{T}\mathbf{x}_2\|_2^2 \ge \|\mathbf{B}(\mathbf{w}_1 - \mathbf{w}_2)\|_2^2 \ge (1 - \epsilon_2) \|\mathbf{w}_1 - \mathbf{w}_2\|_2^2
$$

Plug these into [\(23\)](#page-5-5) gives us the desired bounds with $\epsilon_1 = 3\epsilon$ and by $d = O(\frac{K \ln(NVR\tau^{-1}\epsilon^{-1}) \ln(1/\rho)}{\epsilon^2})$ $rac{\epsilon}{\epsilon^2}$) $\ln(1/\rho)$, $\epsilon_1 = O\left(\left(\frac{K \ln(NVR\tau^{-1}) \ln(1/\rho)}{d}\right)\right)$ $\frac{\tau^{-1} \ln(1/\rho)}{d}$)^{0.5- η}) for any small $\eta > 0$. \Box

References

- [1] S.P. Boyd and L. Vandenberghe. *Convex optimization*. Cambridge Univ Pr, 2004.
- [2] M. Elad. *Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing*. Springer, 2010.
- [3] R.G. Baraniuk and M.B. Wakin. Random projections of smooth manifolds. *Foundations of Computational Mathematics*, 9(1):51–77, 2007.
- [4] J.A. Tropp. *Topics in sparse approximation*. PhD thesis, The University of Texas at Austin, 2004.