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Abstract

In this supplementary material, we report results from additional experiments,
and provide complete proofs for the mathematical statements made in the paper.
Specifically, we provide larger scale versions of the visualization results on the
CMU PIE dataset presented in the paper, as well as the corresponding visualiza-
tion when using PCA. We also perform further experiments report on facial images
using the Extended Yale B. Furthermore, we present the derivation of the opti-
mization problems for the general dictionary and sparse linear models and their
closed-form solutions, presented in Sections 3.1 and 3 of the paper, respectively.
For the nonlinear extension of Section 3.2, we discuss an alternative generaliza-
tion of the sparse linear model than that discussed in the paper, and rigorously
derive the optimization problem and representer theorem weused the kernel case.
We use the same notation as in the paper. To avoid confusion, when referring to
sections, figures, and equations in the main paper, we alwaysexplicitly indicate
so.

1 Visualization of CMU PIE

In Figure 1 of the paper, we show two-dimensional projections of all samples in the CMU PIE
dataset, as well as identity-averaged faces across the dataset for various illuminations, poses, and
expressions, produced using LPP and the proposed method. InFigures 1-2, we show larger scale
versions of these projections, so that details are better visible. Furthermore, in Figure 3, we show
the corresponding projections produced by using PCA.

2 Experiments on Extended Yale B Dataset

We report additional experimental results on facial imagesin the linear case, this time using the
Extended Yale B [1] dataset (specifically, the subset used in[2]). We pre-normalize face images to
be unit-length vectors, and use the same settings for dictionary learning as for the experiments on
CMU PIE.

We repeat the recognition experiments on facial images of Section 4 of the paper. Due to the much
smaller size of the Extended Yale B dataset when compared to CMU PIE, we only consider the
cases of 50 and 40 training samples for each of the 38 individuals in the dataset. Other than that, we
use the same experimental setting as with CMU PIE. In Figure 4, we show the average recognition
accuracy versus the number of projections achieved by various methods, and for different numbers
of training samples.

The main conclusions drawn from the experiments on CMU PIE apply here as well, with the pro-
posed method outperforming competing methods. Note, however, that in this case performance
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Figure 1:Two-dimensional projection of CMU PIE dataset, colored by identity, obtained using LPP. Shown
at high resolution and at their respective projections are identity-averaged faces across the dataset for various
illuminations, poses, and expressions. Insets show projections of samples from only two distinct identities.
(Best viewed in color.)

for all methods deteriorates faster as the training samplesper individual decrease, due to the much
smaller dataset.

3 Derivation of optimization problem for the general and sparse linear
models

We begin by deriving equation (10) of the paper for the more general dictionary model. We denote
for convenienceE = DTSD − I, and therefore equation (5) of the paper (which holds for the
general dictionary model as well) becomes

min
LM×N

E a1,a2,ε1,ε2

[

(

aT
1
Ea2 + εT

1
SDa2 + εT

2
SDa1 + εT

1
Sε2

)2
]

, (1)

which, after expanding the square, can be written as

min
LM×N

E a1,a2,ε1,ε2

[

(

aT
1
Ea2

)2

+
(

εT
1
SDa2

)2
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(
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2
SDa1

)2

+
(
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1
Sε2

)2

+ 2aT
1
Ea2ε

T
1
SDa2 + 2aT

1
Ea2ε

T
2
SDa1 + 2aT

1
Ea2ε

T
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Sε2

+ 2εT
1
SDa2ε

T
2
SDa1 + 2εT

1
SDa2ε

T
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Sε2

+ 2εT
2
SDa1ε

T
1
Sε2

]

. (2)

Due to the zero-mean and independence assumptions fora1, a2, ε1, ε2, it is straightforward to show
that the expectation of the summands corresponding to the cross-terms is equal to zero. Therefore,
(2) can be reduced to

min
LM×N

E a1,a2

[

(

aT
1
Ea2

)2
]

+ E a2,ε1

[

(

εT
1
SDa2

)2
]

+ E a1,ε2

[

(

εT
2
SDa1

)2
]

+ E ε1,ε2

[

(

εT
1
Sε2

)2
]

. (3)
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Figure 2:Two-dimensional projection of CMU PIE dataset, colored by identity, obtained using the proposed
method. Shown at high resolution and at their respective projections areidentity-averaged faces across the
dataset for various illuminations, poses, and expressions. Insets show projections of samples from only two
distinct identities. (Best viewed in color.)

Figure 3:Two-dimensional projection of CMU PIE dataset, colored by identity, obtained using PCA. Shown
at high resolution and at their respective projections are identity-averaged faces across the dataset for various
illuminations, poses, and expressions. Insets show projections of samples from only two distinct identities.
(Best viewed in color.)
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Figure 4: Results on Extended YaleB. Left: Classification accuracy of various methods, for different values
of the number of projectionsM , using 50 training samples per individual. Right: Classification accuracy of
proposed and best alternative method, for different values of the number of training samples per individual
(color) and projectionsM .

We consider the first term in (3),E a1,a2

[

(

aT
1
Ea2

)2
]

. If we perform the vector-matrix-vector

multiplication and expand the square, the resulting scalaris equal to a linear combination of terms
of the forma1ia1ka2ja2l, for i, j, k, l = 1, . . . ,K, wherea1 = (a11, . . . , a1K) and similarly fora2,
and with constant coefficients that depend on the entries of the matrixE. From the independence
and zero-mean assumptions for the components of the vectorsa1 anda2, the expectation of all the
terms withi 6= k or j 6= l is equal to zero. Therefore, we have that

E a1,a2

[

(

aT
1
Ea2

)2
]

=

K
∑

i=1

K
∑

j=1

cija
2

1ia
2

2j , (4)

and by evaluating the vector-matrix-vector product analytically, it is easy to see that

cij = (E)
2

ij . (5)

Using the fact that, for any matrixM , its Frobenius norm can be written as‖M‖
2

F =
∑

i

∑

j (M)
2

ij , along with equations (4) and (5), we get directly that

E a1,a2

[

(

aT
1
Ea2

)2
]

=
∥

∥

∥
E
√

W 1

∥

∥

∥

2

F
, (W 1)ij = E

[

a2
1ia

2

2j

]

. (6)

Using derivations analogous to the above, it is easy to also prove that

E a2,ε1

[

(

εT
1
SDa2

)2
]

+ E a1,ε2

[

(

εT
2
SDa1

)2
]

=
∥

∥

∥
(SD)⊙

√

W 2

∥

∥

∥

2

F
, (7)

E ε1,ε2

[

(
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1
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)2
]

=
∥

∥

∥
S ⊙

√

W 3

∥

∥

∥

2

F
, (8)

with
(W 2)ij = E

[

ε2
1ia

2

2j

]

+ E
[

ε2
2ia

2

1j

]

, (9)

(W 3)ij = E
[

ε2
1iε

2

2j

]

. (10)

Combining the above, we obtain equation (10) of the paper.

In the case of the sparse linear model, from the assumption that the components ofa andε are i.i.d.
Laplace and Gaussian respectively, we have for alli andj,

E
[

a2
1ia

2

2j

]

= E
[

a2
1i

]

E
[

a2
2j

]

= 4τ4, (11)

E
[

ε2
1ia

2

2j

]

= E
[

ε2
1i

]

E
[

a2
2j

]

= 2σ2τ2, (12)

E
[

a2
1iε

2

2j

]

= E
[

a2
1i

]

E
[

ε2
2j

]

= 2σ2τ2, (13)

E
[

ε2
1iε

2

2j

]

= E
[

ε2
1i

]

E
[

ε2
2j

]

= σ4. (14)
Using these, equation (10) of the paper is simplified into equation (6) of the paper, which is the
optimization problem we consider for the case of the sparse linear model.
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4 Derivation of solution for the sparse linear model case

We introduce some notation. The singular value decomposition ofL is

L = UΣZT , (15)

whereU is aM × M orthogonal matrix,Σ is an invertibleM × M diagonal matrix, andZ is a
N ×M matrix with orthonormal columns, that isZTZ = I. Similarly, the eigendecomposition of
the positive semidefinite matrixDDT is

DDT = V ΛV T , (16)

whereV is aN ×N orthogonal matrix, andΛ is aN ×N diagonal matrix.

We re-write below for convenience the objective function ofthe optimization problem of equation
(6) of the paper,

F (L) = 4τ4
∥

∥

∥
DTLTLD − I

∥

∥

∥

2

F
+ 4τ2σ2

∥

∥

∥
LTLD

∥

∥

∥

2

F
+ σ4

∥

∥

∥
LTL

∥

∥

∥

2

F
. (17)

We can obtain the stationary points of (17) by solving

∂F

∂L
= 0. (18)

Using standard matrix differentiation tools, we can write the derivative ofF with respect toL as

∂F

∂L
= 4L

(

4τ4DDTLTLDDT − 4τ4DDT + 4σ2τ2LTLDDT + σ4LTL
)

. (19)

From (18) and (19), we firstly obtain the trivial solutionL = 0. All other solutions of (18) corre-
spond to the case when all of the columns of the matrix

4τ4DDTLTLDDT − 4τ4DDT + 4σ2τ2LTLDDT + σ4LTL (20)

belong to in the null space ofL. From basic linear algebra, this condition can be equivalently
expressed as

ZT
(

4τ4DDTLTLDDT − 4τ4DDT + 4σ2τ2LTLDDT + σ4LTL
)

= 0. (21)

By multiplying the above from the right with
(

DDT
)−1

ZΣ
−2, with some basic matrix manipu-

lation and using the orthogonality properties of the matrices involved, the above becomes

4τ4ZTV ΛV TZ + σ4
Σ

2ZTV Λ
−1V TZΣ

−2 = 4τ4Σ−2 − 4σ2τ2I. (22)

We notice that the right-hand part of (18) is always symmetric. For the left-hand part of (18) to
be symmetric, it is easy to check that one of the following conditions must be true:Σ must be the
identify matrix; or the off-diagonal elements of the matrixZtV must be zero. The first condition
can be rejected, as it is easy to check that then it is not possible for both (18) and the requirement
ZTZ = I to be true. The second condition, and the fact thatV is orthogonal, imply thatZ is
formed from anyM columns ofV , that isZ = V M . Then, (22) becomes

4τ4ΛM + σ4
Σ

2
Λ

−1

M Σ
−2 = 4τ4Σ−2 − 4σ2τ2I, (23)

whereΛM is the diagonal matrix formed from theM eigenvalues ofDDT corresponding to the
M columns ofV used to formZ. This is an equation involving only diagonal matrices and can
be solved trivially for its diagonal elements. Combining the above, we obtain that the solutions of
(18), and therefore the stationary points of (17), are either L = 0, or of the form (up to an arbitrary
rotation corresponding to the matrixU in (15))

L = diag (f (λM ))V T
M . (24)

whereλM = (λ1, . . . , λM ) is aM × 1 vector composed of any subset ofM eigenvalues of the
N ×N matrixDDT , V M is theN ×M matrix with the corresponding eigenvectors as columns,
f (·) is a function applied element-wise to the vectorλM , equal to (as obtained by solving (23))

f (λi) =

√

4τ4λi

σ4 + 4τ2σ2λi + 4τ4λ2

i

, (25)

5



anddiag (f (λM )) is theM×M diagonal matrix withf (λM ) as its diagonal. Substituting the above
solution in (17), and using (15), (16) and the orthogonalityproperties of the matrices involved, it is
easy to see that the objective function evaluated at the stationary points is equal to

F (L) = 4τ4
∥

∥

∥
Λ

1

2

M diag (f (λM ))
2
Λ

1

2

M − I

∥

∥

∥

2

F

+ 4τ2σ2

∥

∥

∥
diag (f (λM ))

2
Λ

1

2

M

∥

∥

∥

2

F
+ σ4

∥

∥

∥
diag (f (λM ))

2

∥

∥

∥

2

F
. (26)

From the definition of the Frobenius norm, and some algebraicmanipulation, we can rewrite the
above as

F (L) =

M
∑

i=1

h (λi) , (27)

where

h (λi) =
4σ2τ4

(

σ2 + 4λiτ
2
)

(σ2 + 2λiτ2)
2

. (28)

It is easy to see thath (λ) is a strictly decreasing function ofλ for all positive values ofσ and
τ . Consequently, the stationary point where the objective functionF (L) has the lowest value is
obtained when theM largest eigenvalues are selected in (24), therefore arriving at the solution
presented in equation (8) of the paper. We also see that forσ = 0, the objective function has the
same value for all stationary points, which is the reason forthe solution ambiguity we discuss in the
paper with regards to the noiseless case (see equation (9) ofthe paper).

5 Alternative model for the kernel case

We briefly discuss here an extension of the sparse linear model to the kernel case different from
the one used in Section 3.2 of the paper. We denote byC the subspace spanned by the atoms of
dictionaryD,

C ≡ span
{

d̃i, i = 1, . . . ,K
}

. (29)

C has finite dimensiond ≤ K, and thus is closed. Therefore, it has an orthogonal complementC⊥

and we can writeH = C ⊕ C⊥. We also denote byPC the orthogonal projection toC.

Denote by the set{ẽi, i = 1, . . . , d} the orthonormal basis ofC, and by the set{ẽi, i = d+ 1, . . .}
its extension to the rest of the spaceH. Then, we assume a probabilistic model where samples are
generated from equation (12) of the paper, and under the sameassumptions fora as in the paper.
We also still assume thatε is a Gaussian process overR

N with sample patchs inH. However, we
assume that the covariance operator ofε is defined as follows,

〈ẽi, Cε̃ẽj〉H = σ2, 1 ≤ i, j ≤ d, (30)

〈ẽi, Cε̃ẽj〉H = 0, i > d or j > d. (31)

As the set{ẽi, i = 1, . . .} is an orthonormal basis ofH, the above offers a full characterization of
the operatorCε̃. It is easy to construct such an operator, and therefore the Gaussian process̃ε, even
on infinite dimensional spaces. Equivalently, the operatoracts as the identity (times a constant)
for the projections of signals in the subspaceC, and as the zero operator for the residuals. As a
consequence, the above model allows for Gaussian noise of zero-mean and varianceσ2 along all
of the dimensions of the subspaceC, but does not allow for noise along any other dimension of
H (or alternatively, noise there has zero variance). If we denote by

{

bi ∈ R
d, i = 1, . . . ,K

}

the
coordinates of the dictionary elements with respect to the subspace basis{ẽi, i = 1, . . . , d}, then all
functions generated by the above model will also belong toC, and their coordinates with respect to
the above basis will be

cj =

K
∑

i=1

bijai + ǫj , j = 1, . . . , d, (32)

whereǫj , j = 1, . . . , d are Gaussian random variables with mean zero and varianceσ2. Then, for
such functions, it is easy to see that MAP estimation ofa reduces to the kernelized lasso of equation
(13) of the paper.
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We note that, for anyf ∈ H, the optimization problem (13) of the paper can be written equivalently
as

min
a∈RK

1

2σ2
‖f − PCf‖

2

H
+

1

2σ2
‖PCf −Da‖

2

H
+

1

τ
‖a‖

1
. (33)

As the part 1

2σ2 ‖f − PCf‖
2

H
does not depend ona, the above is exactly equivalent to

min
a∈RK

1

2σ2
‖PCf −Da‖

2

H
+

1

τ
‖a‖

1
, (34)

and asPCf ∈ C, the above optimization problem can be rewritten as MAP estimation of the co-
ordinates (32) and be explained probabilistically by the model we introduced above. Therefore,
the above model can be used for the projections onC of all functions inH, and then kernel lasso
becomes MAP estimation of their projection’s coordinates in some basis. The termf − PCf is
not explained by the above model, and in fact any non-zero such component occurs only with zero
probability. The fact that 1

2σ2 ‖f − PCf‖
2

H
cannot be the likelihood of some distribution for noise

is exactly the problem we run into when trying to extend the model we used in the paper to the
infinite dimensional case. However, if one is willing to “discard” the componentf − PCf for all
samples arising in practice, this alternative model can be applied to the infinite dimensional case for
all signals.

6 Derivation of solution for the nonlinear case

Firstly, we derive equation (14) of the paper. We have

δp2 =
(

(VΦx1)
T
(VΦx2)− aT

1
a2

)2

(35)

=
(

〈VΦx1,VΦx2〉RM − aT
1
a2

)2

(36)

=
(

〈Φx1,V
∗VΦx2〉H − aT

1
a2

)2

(37)

=
(

〈Φx1,SΦx2〉H − aT
1
a2

)2

, (38)

where we have used thatS = V∗V. Then, using equation (12) of the paper, the above becomes

δp2 =
(

〈Da1 + ε̃1,S (Da2 + ε̃2)〉H − aT
1
a2

)2

(39)

=
(

〈Da1,S (Da2)〉H + 〈ε̃1,S (Da2)〉H + 〈Da2,S ε̃2〉H

+ 〈ε̃1,S ε̃2〉H − aT
1
a2

)2

(40)

=
(

K
∑

i=1

K
∑

j=1

a1ia2j

(〈

d̃i,Sd̃j

〉

H

− δij

)

+

K
∑

j=1

a2j

〈

ε̃1,Sd̃j

〉

H

+

K
∑

i=1

a1i

〈

d̃i,S ε̃2

〉

H

+ 〈ε̃1,S ε̃2〉H − aT
1
a2

)2

. (41)

whereδij is the Kronecker delta. From the equivalence of Gaussian processes with sample paths on
Hilbert spaces and Gaussian measures [3,4], we have that

E

[〈

ε̃1, f̃
〉

H

]

= 0, ∀f̃ ∈ H, (42)

and similarly forε̃2. Furthermore, from the properties of the covariance operatorCε̃1 = Cε̃2 = σ2I,
we have that

E

[〈

ε̃1, f̃
〉

H

〈ε̃1, g̃〉H

]

=
〈

Cε̃1 f̃ , g̃
〉

H

= σ2

〈

f̃ , g̃
〉

H

, ∀f̃ , g̃ ∈ H, (43)

and similarly forε̃2. If in (41) we expand the square and take the expectation, then using (42), (43),
and an analysis similar to that presented before for deriving equation (10) of the paper, we arrive at

E
[

δp2
]

= 4τ4
K
∑

i=1

K
∑

i=1

(〈

d̃i,Sd̃j

〉

H

− δij

)2

+ 4τ2σ2

K
∑

i=1

〈

Sd̃i,Sd̃i

〉

H

+ ‖S‖
2

HS , (44)
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which corresponds to equation (14) in the paper.

We now need to prove that the minimizer of (44) over the set of compact, positive semi-definite,
self-adjoint, and linear operatorsS of rankM has the form of equation (15) of the paper. For this
purpose, we use and extend the representer theorem presented in [5]. The first and third term of
the objective function (44) along with the rank constraint correspond to the conditions of Theorem
3 of [5]. Here, we have additionally the constraint thatS be self-adjoint, and also the second term
of the objective function that violates the conditions of that theorem. Extending the theorem to the
case whenS is also required to be positive semi-definite is straightforward. In order to handle terms

of the form
〈

Sd̃i,Sd̃i

〉

H

, for i = 1, . . . ,K, note that due to the Hilbert-Schmidt norm term in

the objective function (44), its minimizerS has finite Hilbert-Schmidt norm and thus is a Hilbert-
Schmidt operator. Therefore, we can consider its decomposition asS = SS + S⊥, whereSS is the

projection ofS onto the linear span of
{

d̃i ⊗ d̃j , i, j = 1, . . . ,K
}

,

SS =

K
∑

i=1

K
∑

j=1

γij d̃i ⊗ d̃j , (45)

andS⊥ is orthogonal to each element of the above set,
〈

d̃i,S
⊥d̃j

〉

H

= 0, i, j = 1, . . . ,K. (46)

AsS is compact and self-adjoint,SS andS⊥ are also compact and self-adjoint. Therefore, from the
spectral theorem,S⊥ admits an eigendecomposition

S⊥ =
∑

k

λkṽk ⊗ ṽk, (47)

whereṽk ∈ H is an orthonormal set andλk are positive. Combining (47) with (46) fori = j, i =
1, . . . ,K, we obtain

〈

ṽk, d̃
〉

H

= 0, ∀i = 1, . . . ,K, ∀k such thatλk 6= 0. (48)

For eachi = 1, . . . ,K, we have
〈

Sd̃i,Sd̃i

〉

H

=
〈

d̃i,SSd̃i

〉

H

(49)

=
〈

d̃i,
(

SS + S⊥
) (

SS + S⊥
)

d̃i

〉

H

(50)

=
〈

d̃i,S
SSS d̃i

〉

H

+
〈

d̃i,S
SS⊥d̃i

〉

H

+
〈

d̃i,S
⊥SS d̃i

〉

H

+
〈

d̃i,S
⊥S⊥d̃i

〉

H

. (51)

where we have used linearity and self-adjointness. However, using (45), (47) and (48), it is easy to
see that the terms involvingSSS⊥, S⊥SS andS⊥S⊥ are equal to zero. Therefore we conclude that

〈

Sd̃i,Sd̃i

〉

H

=
〈

SS d̃i,S
S d̃i

〉

H

. (52)

From (52) and equation (20) of the proof of Theorem 3 of [5], and using the full rank assumption
for KDD, we can deduce that the minimizer of (44) can be written in theform

S =

K
∑

i=1

K
∑

j=1

γij d̃i ⊗ d̃j . (53)

The matrixγ formed by the coefficientsγij is related to the matrixα of Theorem 3 of [5] through
the equation (again assuming thatKDD has full rank)

α = K
1

2

DD
γK

1

2

DD
(54)

as proved in the proof of Theorem 3 of [5] (see fifth equation inpage 824) and applied to our case

where the set of elements in the optimizer is
{

d̃i ⊗ d̃j , i, j = 1, . . . ,K
}

. The eigenvalues ofα

are the same of those ofS, as shown in the proof of Theorem 3 of [5], and thereforeα is positive
semi-definite and of rankM . Under the assumption that the matrixKDD is full rank, we deduce
thatγ is also positive-semidefinite and of rankM . Combining this with (53), we conclude that the
minimizer of (44) has the form of equation (15) of the paper.
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