
7 Appendix

7.1 Algorithm

We present the detailed algorithm description as Algorithm 2.

Algorithm 2: Quadratic Approximation method for Sparse Inverse Covariance Learning (QUIC)
Input : Empirical covariance matrix S, scalar λ, initial X0, inner stopping tolerance ε, parameters

0 < σ < 0.5, 0 < β < 1
Output: Sequence ofXt converging to arg minX!0 f(X), where

f(X) = − log detX + tr(SX) + λ‖X‖1.
1 ComputeW0 = X−1

0 .
2 for t = 0, 1, . . . do
3 D = 0, U = 0
4 while not converged do
5 Partition the variables into fixed and free sets:
6 Sfixed := {(i, j) | |∇ijg(Xt)| < λ− ε and (Xt)ij = 0}, Sfree := N \ Sfixed.
7 for (i, j) ∈ Sfree do
8 a = w2

ij + wiiwjj

9 b = sij − wij + w
T
·iu·j

10 c = xij + dij

11 µ = −c + S(c− b/a, λ/a)
12 dij ← dij + µ
13 ui· ← ui· + µwj·
14 uj· ← uj· + µwi·

15 end
16 end
17 for α = 1, β, β2, . . . do
18 Compute the Cholesky factorization LLT = Xt + αD.
19 if Xt + αD &' 0 then
20 continue
21 end
22 Compute f(Xt + αD) from L andXt + αD
23 if f(Xt + αD) ≤ f(Xt) + ασ [tr(∇g(Xt)D) + λ‖Xt + D‖1 − λ‖X‖1] then
24 break
25 end
26 end
27 Xt+1 = Xt + αD
28 ComputeWt+1 = X−1

t+1 reusing the Cholesky factor.
29 end

7.2 Convergence guarantee (Proof of Theorem 1)

In this section, we prove that Algorithm 2 converges to the global optimum. Our proof is based
on the proof in [17], which was developed for coordinate gradient descent methods. [17] considers
composite objectives of the form

F (x) = g(x) + h(x), (13)

where g(x) is sufficiently smooth (continuously differentiable) and h(x) is non-differentiable but
separable. Recall, that in our case, g(X) = − log detX + tr(SX) and h(X) = λ‖X‖1. In [17] it
is assumed that g(X) is smooth over the domain Rn. In our case g(X) is smooth over the restricted
domain of the positive definite cone S++

n . We extend the analysis so that convergence still holds
under our setting.
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7.2.1 Notation

In the following arguments, capital letters such as X, X̄, A are p× p matrices, and I is the identity
matrix. f(X) is our objective function defined by (2). As is standard [13], the domain of the convex
function− log det is extended to Sp (p× p symmetric matrices) by

− log detX =

{

−
∑n

i=1 log(λi(X)), ifX ' 0
∞, otherwise

where λi(X) is the ith eigenvalue of X . We use ‖X‖2 to define the induced two norm of a matrix,
and ‖D‖F to denote the 2-norm of vec(D), which is equal to the Frobenius norm of the matrixD.

We are only dealing with symmetric matrices, and therefore we restrict our attention to the upper
triangular indices denoted by N ≡ {(i, j) | 1 ≤ i ≤ j ≤ p}. The matrix function g(X) can be
viewed as an R|N | → R function operating on the vector containing the upper triangular elements
of X . The gradient ∇g(X) accordingly becomes an R|N | vector, while the Hessian ∇2g(X) =
X−1 ⊗ X−1 can be represented by an R|N |×|N | matrix. We emphasize that we will treat any
symmetric matrix as its vectorization of the upper diagonal elements, for example, we will denote
vec(D)T∇2g(X) vec(D) byDT∇2g(X)D.

For anyX ' 0, we define

DJ(X) ≡ arg min
D:Dij=0
∀(i,j)/∈J

∇g(X)T D +
1

2
DT∇2g(X)D + λ‖X + D‖1, (14)

where J ⊆ N is any index set, and in particularDN (X) takes the minimum over all variables.

We use X1, X2, . . . to denote the sequence of matrices generated by our algorithm, where each
Xt+1 is updated fromXt by

Xt+1 = Xt + αtDJt(Xt),

where Jt is the index set selected at the kth iteration, and αt is the step size which is the maximum
value among {1, β, β2, . . . } which satisfies

f(Xt + αDt) < f(Xt) + ασ∆t, (15)
where 0.5 > σ > 0 is a constant and

∆t ≡ ∆Jt(Xt) ≡ ∇g(Xt)
T Dt + λ‖Xt + Dt‖1 − λ‖Xt‖1.

We use Dt ≡ DJt(Xt) for simplicity.

Following the setting in [17], the index sets J1, J2, . . . need to satisfy
⋃

j=0,...,T−1

Jt+j ⊇ N ∀t = 1, 2, . . . (16)

for some fixed T . Our algorithm satisfies (16) as mentioned in Section 4.1: we set J1, J3, . . . to be
the fixed sets, and J2, J4, . . . to be the free sets and T = 3 will suffice.

7.2.2 Lemmas

Our first lemma establishes that our iterates are in the set mI 1 X 1 MI for some positive
constantsm andM .
Lemma 3. The level set U = {X | f(X) < f(X0) and X ∈ Sp

++} is contained in the set {X |
mI 1 X 1MI} for positive constants m, M > 0.

Proof. First, we prove that X 1 MI for all X ∈ U . The fact that S 2 0 and X ' 0 implies
tr(SX) ≥ 0 and ‖X‖1 > 0. Therefore we have

f(X0) > f(X) ≥ − log detX + λ‖X‖1 (17)
Since ‖X‖2 is the largest eigenvalue of X , we have − log det X ≥ −p log(‖X‖2). In addition,
‖X‖1 ≥ tr(X) ≥ ‖X‖2. We combine these two facts and (17) to arrive at

f(X0) > −p log(‖X‖2) + λ‖X‖2.
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Since −p logx + λx is unbounded as x increases, there must exist an M that depends on X0 such
that ‖X‖2 ≤M .

Next, we prove thatmI 1 X for all X ∈ U . We denote the smallest eigenvalue of X by a and use
the upper bound on the other eigenvalues to get:

f(X0) > f(X) > − log detX ≥ − log a− (p− 1) logM, (18)

which shows thatm = e−f(X0)M−(p−1) is a lower bound for a.

Lemma 4. There exists a unique minimizerX∗ for (2).

Proof. According to Lemma 3, the level set is contained in the compact set S = {X | mI 1
X 1 MI}, where ∇2f(X) = X−1 ⊗X−1, ∇2f(X) 2 M−2I . From Weierstrass’ Theorem, any
continuous function in a compact set attains its minimum. In addition, f(X) is strongly convex in
the compact set, so the minimizerX∗ is unique.

Lemma 5. X∗ is the optimal solution of (2) if and only if

gradS
ij f(X∗) = 0 ∀i, j,

where the minimum-norm sub-gradient gradS
ij f(X) is defined by

gradS
ij f(X) =







∇ijg(X) + λ if Xij > 0,
∇ijg(X)− λ if Xij < 0,
sign(∇ijg(X))max(|∇ijg(X)|− λ, 0) if Xij = 0.

Proof. The optimality condition for f(X) is that for all (i, j) ∈ N

∇ijg(X)







= −λ ifXij > 0,
= λ ifXij < 0,
∈ [−λ λ] ifXij = 0.

(19)

It is easy to prove that (19) holds if and only if gradS
ij f(X) = 0 for all i, j. Notice that in our case

∇g(X) = S −X−1 therefore

gradS
ijf(X) =







(S −X−1)ij + λ if Xij > 0,
(S −X−1)ij − λ if Xij < 0,
sign((S −X−1)ij)max(|(S −X−1)ij |− λ, 0) if Xij = 0.

Lemma 6. For any index set J ⊆ N , DJ(X) = 0 if and only if gradS
ij f(X) = 0 for all (i, j) ∈ J .

Proof. DJ(X) = 0 if and only if D = 0 satisfy the optimality condition of (14). The condition can
be written as (19) with (i, j) ∈ J . This is the same as (19) for a subset of indexes. Follow the same
argument we can prove that this condition is equivalent to gradS

ij f(X) = 0 for all (i, j) ∈ J .

Lemma 7. ∆J(X) in the line search condition (15) satisfies

∆J (X) = ∇g(X)T DJ (X) + λ‖X + DJ(X)‖1 − λ‖X‖1 ≤ −DJ(X)T∇2g(X)DJ(X)., (20)

and consequently,
∆J(X) ≤ −m‖DJ(X)‖2F (21)
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Proof. For simplicity, and since there can be no confusion, we drop index J . By definition of D in
(14), ∀α ∈ [0, 1]:

∇g(X)T D+
1

2
DT∇2g(X)D+λ‖X+D‖1 ≤ ∇g(X)T (αD)+

1

2
α2DT∇2g(X)D+λ‖X+αD‖1.

(22)
Since ‖ · ‖1 is a norm, the following holds for all α ≥ 0:

λ‖X + αD‖1 = λ‖α(X + D) + (1− α)X‖1 ≤ λα‖X + D‖1 + λ(1 − α)‖X‖1. (23)

Combining (22) and (23) yields:

∇g(X)T D+
1

2
DT∇2g(X)D+λ‖X+D‖1 ≤ α∇g(X)T D+

1

2
α2DT∇2f(X)D+λα‖X+D‖1+λ(1−α)‖X‖1.

Therefore

(1− α)∇g(X)T D + (1− α)λ‖X + D‖1 − (1− α)λ‖X‖1 +
1

2
(1− α2)DT∇2g(X)D ≤ 0.

Divide both sides by 1− α to get:

∇g(X)T D + λ‖X + D‖1 − λ‖X‖1 +
1

2
(1 + α)DT∇2g(X)D ≤ 0.

By setting α ↑ 1, we have

∇g(X)T D + λ‖X + D‖1 − λ‖X‖1 ≤ −DT∇2g(X)D,

which proves (20). Combine with Lemma 3 to get (21).

Lemma 8. For any convergent subsequenceXst → X̄ ,

Dst ≡ DJst
(Xst)→ 0.

Proof. The objective value is monotonically decreasing and bounded below, therefore f(Xst) can-
not go to negative infinity, so f(Xst)− f(Xst+1

)→ 0. From (15), we have αst∆st → 0.

We proceed to prove by contradiction. If Dst does not converge to 0, then there exist an infinite
index set T ⊆ {s1, s2, . . .} and δ > 0 such that ‖Dt‖F > δ for all t ∈ T . We will work in this
index set T in what follows.

Let αt denote the line search step size which satisfies (15), by our line search procedure αt

β will not
satisfy (15), so we have:

f(Xt + (
αt

β
)Dt)− f(Xt) ≥ σ(

αt

β
)∆t. (24)

IfXt + αt

β Dt is not positive definite, then we define f(Xt + αt

β Dt) to be∞, so (24) still holds. We
have

σ∆t ≤
g(Xt + (αt

β )Dt)− g(Xt) + λ‖Xt + αt

β Dt‖1 − λ‖Xt‖1
αt

β

≤
g(Xt + (αt

β )Dt)− g(Xt) + (αt

β )λ‖Xt + Dt‖1 + (1− αt

β )λ‖Xt‖1 − λ‖Xt‖1
αt

β

(by (23))

=
g(Xt + (αt

β )Dt)− g(Xt)
αt

β

+ λ‖Xt + Dt‖1 − λ‖Xt‖1, ∀t ∈ T .

By the definition of∆t we can replace the last two terms and get

σ∆t ≤
g(Xt + (αt

β )Dt)− g(Xt)
αt

β

+ ∆t −∇g(Xt)
T Dt,

(1− σ)(−∆t) ≤
g(Xt + (αt

β )Dt)− g(Xt)
αt

β

−∇g(Xt)
T Dt
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By (21) in Lemma 7,

(1− σ)m‖Dt‖
2
F ≤

g(Xt + (αt

β )Dt)− g(Xt)
αt

β

−∇g(Xt)
T Dt

(1− σ)m‖Dt‖F ≤
g(Xt + (αt

β )‖Dt‖F
Dt

‖Dt‖F
)− g(Xt)

‖Dt‖F
αt

β

−∇g(Xt)
T Dt

‖Dt‖F
.

Set α̂t = αt

β ‖Dt‖F , and since ‖Dt‖F > δ for all t ∈ T we have

(1 − σ)mδ ≤
g(Xt + α̂t

Dt

‖Dt‖F
)− g(Xt)

α̂t
−
∇g(Xt)T Dt

‖Dt‖F
. (25)

By (21),
−αt∆t ≥ αtm‖Dt‖

2
F ≥ mαt‖Dt‖F δ,

and {αt∆t}t → 0, so {αt‖Dt‖F}t → 0, so {α̂k}t → 0. Since Dt

‖Dt‖F
is in the compact 1-norm

ball, there exists a subset T̄ ⊂ T such that { Dt

‖Dt‖F
}T̄ → D̄, so

(1− σ)mδ ≤
g(Xt + α̂tD̄)− g(Xt)

α̂t
−∇g(Xt)

T D̄. (26)

Our algorithm guarantees that Xt is positive definite. Also Xt + α̂tD̄ is positive definite when
α̂t → 0. So taking limit of (26) as t ∈ T̄ and k →∞ on (25), we have

(1− σ)mδ ≤ ∇g(X̄)T D̄ −∇g(X̄)T D̄ = 0,

a contradiction, finishing the proof.

Lemma 9. For any X ' 0 and symmetric D, there exists an ᾱ > 0 such that for all α < ᾱ, (1)
X + αD ' 0 and (2) X + αD satisfies the line search condition (15).

Proof. First, when α < σn(X)/‖D‖2 (σn(X) stands for the smallest eigen-value ofX), ‖αD‖2 <
σn(X), so X + αD ' 0.

Second,

f(X + αD)− f(X) = g(X + αD)− g(X) + λ‖X + αD‖1 − λ‖X‖1
≤ g(X + αD)− g(X) + αλ(‖X + D‖1 − ‖X‖1) by (23)
= α∆ + o(α).

It follows that for a fixed 0 < σ < 1, when α is sufficiently small, the line search condition must
hold.

7.2.3 Proof of Lemma 1

Since the fixed set Sfixed is defined by

Sfixed := {(i, j) | |∇ijg(Xt)| < λ− ε and (Xt)ij = 0},

so gradS
ij f(Xt) = 0 for all (i, j) ∈ Sfixed. From Lemma 6, this impliesDSfixed

= 0, therefore the
solution of the following optimization problem is∆ = 0:

arg min
∆

f(Xt + ∆) such that∆ij = 0 ∀(i, j) ∈ Sfree.

7.2.4 Main proof

Theorem 3. Our algorithm QUIC converges to a unique global optimum.
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Proof. Assume a subsequence {Xt}T converges to X̄ . Since the choice of the index set Jt selected
at each step is finite, we can further assume that Jt = J̄0 for all t ∈ T . From Lemma 8,DJ̄0

(Xt)→
0. By the continuity of ∇f(X) and ∇2f(X), it is easy to show DJ̄0

(Xt) → DJ̄0
(X̄). Therefore

DJ̄0
(X̄) = 0.

Furthermore, {DJ̄0
(Xt)}t → 0 and ‖Xt −Xt+1‖F ≤ ‖DJ̄0

(Xt)‖F , so {Xt+1}t also converges to
X̄ . By further subsetting of T we can assume that Jt+1 = J̄1 for all t ∈ T . By the same argument
we can prove {DJt+1

(Xt)}t → 0, so DJ̄1
(X̄) = 0. Similarly, we can show that DJ̄i

(X̄) = 0 ∀i =
0, . . . , T −1 can be assumed for an appropriate subset of T . According to Lemma 6 and assumption
(16), X̄ is a stationary point:

gradS
ij f(X̄) = 0 ∀i, j.

Moreover, by Lemma 4, there exists a unique optimal point, so the sequence {Xt} generated by our
algorithm must converge to the global optimum.

7.3 Quadratic Convergence Rate

7.3.1 Existing results for Newton method on Bounded constrain

The convergence rate of Newton method on bounded constrained minimization has been studied in
[10] and [6]. Here we briefly mention their results.

Assume we want to solve a constrained minimization problem

min
x∈Ω

F (x),

where Ω is a nonempty subset of Rn and F : Rn → R has a second derivative ∇2F (x). Then
beginning from x0, a natural extension of Newton method is to compute xk+1 by

xk+1 = argmin
x∈Ω
∇F (xk)T (x− xk) +

1

2
(x− xk)T∇2F (xk)(x − xk). (27)

For simplicity, we assume F is strictly convex and has a unique minimizer x∗ in Ω. Then the
following theorem holds
Theorem 4. Assume F is strictly convex, has a unique minimizer x∗ in Ω, and∇2F (x) is Lipschitz
continuous, then for all x0 sufficiently close to x∗, the sequence {xk} generated by (27) converges
quadratically to x∗.

This theorem is proved in [6].

7.3.2 Proof for the quadratic convergence of QUIC

Again we consider the composite objectives as (13), and g(X) has Lipschitz continuous second
order derivatives. AssumeX∗ is the optimal solution, then we can divide the indexes into

P = {(i, j) | ∇ijg(X∗) = −λ}, N = {(i, j) | ∇ijg(X∗) = λ}, Z = {(i, j) | −λ < ∇ijg(X∗) < λ}.
(28)

Notice thatX∗
ij ≥ 0 for all (i, j) ∈ P , X∗

ij ≤ 0 for all (i, j) ∈ N andX∗
ij = 0 for all (i, j) ∈ Z .

Lemma 10. If the second order derivative of g(·) is Lipschitz continuous, then when Xt is close
enough to X∗, the line search condition (15) will be satisfied with step size α = 1.

Proof. To simplify the notation, here we denote Xt by X , Dt by D, and ∆t by ∆. We bound the
decrease in objective function value by the following argument. First, define

g̃(t) = g(X + tD),

so g̃′′(t) = DT∇2g(X + tD)D. From the Lipschitz continuity of∇2g(·), we have

‖∇2g(X + tD)−∇2g(X)‖ ≤ tL‖D‖,

where L is the Lipschitz constant. By definition

|g̃′′(t)− g̃′′(0)| = |DT (∇2g(X + tD)−∇2g(X))D| ≤ tL‖D‖3.

15



Therefore we can upper bound g̃′′(t) by

g̃′′(t) ≤ g̃′′(0) + tL‖D‖3 = DT∇2g(X)D + tL‖D‖3.

Integrate both sides to get

g̃′(t) ≤ g̃′(0) + tDT∇2g(X)D +
1

2
t2L‖D‖3 = ∇g(X)T D + tDT∇2g(X)D +

1

2
t2L‖D‖3.

Integrating both sides again, we have

g̃(t) ≤ g̃(0) + t∇g(X)T D +
1

2
t2DT∇2g(X)D +

1

6
t3L‖D‖3.

Taking t = 1 the inequality becomes

g(X + D) = g̃(1) ≤ g(X) +∇g(X)T D +
1

2
DT∇2g(X)D +

1

6
L‖D‖3

g(X + D) + λ‖X + D‖1 ≤ g(X) + λ‖X‖1 + (∇g(X)T D + λ‖X + D‖1 − λ‖X‖1) +
1

2
DT∇2g(X)D +

1

6
L‖D‖3,

so

f(X + D) ≤ f(X) + ∆ +
1

2
DT∇2g(X)D +

1

6
L‖D‖3

≤ f(X) +
1

2
∆−

1

6

L

m
‖D‖∆ (by (20) and (21) in Lemma 7)

= f(X) + (
1

2
−

1

6

L

m
‖D‖)∆.

And from Lemma 8 we have Dk → 0, therefore when k is large enough, (1
2 −

1
6

L
m‖D

k‖) will be
larger than σ (0 < σ < 0.5), so the line search condition holds with step size 1.

Lemma 11. Assume that the sequence {Xt} converges to the global optimum X∗. There exists a
t̄ > 0 such that

(Xt)ij







≥ 0 if (i, j) ∈ P
≤ 0 if (i, j) ∈ N
= 0 if (i, j) ∈ Z

(29)

for all t > t̄.

Proof. We prove the case for (i, j) ∈ P by contradiction, the other two cases can be handled
similarly. Assume that there exists an infinite subsequence {Xst} such that (Xst)ij < 0. We
consider the update fromXst−1 to Xst . From Lemma 10, we can assume that st is large enough so
that the step size equals 1, thereforeXst = Xst−1 + dst . Note thatDst is the optimal solution of

min
D
∇g(Xst−1)

T D +
1

2
DT∇2g(Xst−1)D + ‖X + D‖1 − ‖X‖1. (30)

Since (Xst)ij = (Xst−1)ij + (Dst)ij < 0, from the optimality condition of (30) we have

(∇g(Xst−1) +∇2g(Xst−1)(Dst))ij = λ. (31)

Since Dst converges to 0, (31) implies that {∇ijg(Xst−1)} will converge to λ. However, by the
definition of P , ∇ijg(X∗) = −λ, and by the continuity of ∇g we get that {∇ijg(Xt)} converges
to∇ijg(X∗) = −λ, a contradiction finishing the proof for the case with (i, j) ∈ P in (29).

Lemma 12. Assume Xt → X∗. There exists a t̄ > 0 such that variables in P or N will not be
selected as fixed set (denoted by Sfixed) after t > t̄. That is,

Sfixed ⊂ Z = N \ (P ∪N).
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Proof. Since Xt converges to X∗ and ∇g(·) is continuous, ∇g(Xt) will converge to ∇g(X∗).
Therefore,∇ijg(Xt) converges to −λ if (i, j) ∈ P and to λ if (i, j) ∈ N . Since we select fixed set
by testing whether (Xt)ij = 0 and

−λ + ε < ∇ijg(Xt) < λ− ε,

when k is large enough |∇ijg(Xt)−∇ijg(X∗)| will be smaller than ε, then all variables in P orN
will not be selected in the fixed set.

Theorem 5. {Xt} generated by our algorithm QUIC converges asymptotic quadratically to X∗

when t is large enough.

Proof. First, if we the index sets P, N and Z (related to the optimal solution) are given, solving (2)
is the same as solving the following constrained minimization problem.

min
X
− log det(X) + tr(SX) +

∑

(i,j)∈P

λXij −
∑

(i,j)∈N

λXij

s.t. Xij ≥ 0 ∀(i, j) ∈ P, (32)
Xij ≤ 0 ∀(i, j) ∈ N,

Xij = 0 ∀(i, j) ∈ Z.

Next we claim that when k is large enough, our algorithm is equivalent to applying the Newton
method in Section 7.3.1 to minimize (32). Since the objective function values of (32) and (2) are the
same if we restrict variables to follow the sign patterns in (32), to prove the equivalence it suffices
to show:

1. The sign of the optimal solution for the original sub-problem (5) will always be the same as (32)
after a finite number of iterations. This is the result of Lemma 11.

2. The fixed set selection does not affect the Newton sub-problem. This can be proved by Lemma
12 because at each iteration the fixed set Sfixed ⊂ Z , and Z is the set which always satisfies
(Dt)Z = 0 after t large enough. So we will never fix the wrong variables (choose variables in P
or N in the fixed set) after t is large enough.

Moreover, Lemma 10 shows the step size will always be 1 when t large enough. Therefore our
algorithm is equivalent to the Newton method in Section 7.3.1, which converges quadratically to the
optimal solution of (32). Since the revised problem (32) and our original problem (2) has the same
minimum, our algorithm converges quadratically to the optimum of (2) when the iteration t is large
enough.

7.4 Size of free sets in experiments

In Figure 2, we plot the size of the free set versus iterations for Hereditarybc dataset. Starting from a
total of 18692 = 3, 493, 161 variables, the size of the free set progressively drops, in fact to less than
120, 000 in the very first iteration. We can see the super-linear convergence of QUIC even more
clearly when we plot it against the number of iterations.
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Figure 2: Size of free sets and objective value versus iterations (Hereditarybc dataset). There are
total 3, 493, 161 variables, but the size of free set reduce to less than 120, 000 in one iteration, and
become about 20, 000 at the end.
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