
A Supplementary Material

A.1 Summary of Truncated DCNT Generative Model

The DCNT model assumes the following generative process for a corpus of D documents, each
containing N words, and conditioned on metadata encoded via F features:

1. Global parameters shared across all documents:
(a) For all features f = 1, 2, ... F :

i. Draw λf ∼ Gam(af , bf )
ii. Draw µf ∼ N(0, γµ)

(b) Draw λA ∼ Gam(aA, bA)
(c) Draw λV ∼ Gam(aV , bV )
(d) Draw η:k ∼ N(µ,Λ−1)
(e) Draw Ak` ∼ N(0, (kλA)−1)

2. For each document d = 1, 2, . . . , D:
(a) Draw u:d ∼ N(ηTφ:d, IK̄)
(b) Draw v:d ∼ N(Au:d, λ

−1
v IK̄)

(c) Let πkd = ψ(vkd)
∏k−1
`=1 ψ(−v`d)

(d) For each word n = 1, 2, ... N :
i. Draw zdn ∼ Mult(π:d)

ii. Draw wdn ∼ Mult(Ωzdn)

A.2 SCNT: A Singly Correlated Nonparametric Topic Model

To explore the benefits of our full square-root representation of topic correlations, we also consider
a model where A is constrained to be a diagonal matrix. The posterior required by a Gibbs sampler
then becomes

p(Akk | vk:, uk:, λA, λv) ∝ N(Akk | 0, λ−1
A )N(vTk: | uTk:Akk, λ

−1
v ID)

∝ N(Akk | λAλ−1
v + uk:u

T
k:)
−1uk:v

T
k:, (λA + λvuk:u

T
k:)
−1) (1)

Note that when A is constrained to be a diagonal matrix, all rows are assigned the same prior
precision λA. The posterior for λA then equals

p(λA | A, aA, bA) ∝ Gam(λA | aA, bA)

K̄∏
k=1

N(Akk | 0, λ−1
A )

∝ Gam(λA |
1

2
K̄ + aA,

1

2

K̄∑
k=1

A2
kk + bA) (2)

A.3 Monte Carlo Estimation of DCNT Topic Covariances

The DCNT can model both positive and negative correlations among topic frequencies, but due to
the nonlinearity associated with the logistic stick-breaking transformation, these covariances cannot
be determined in closed form. We instead use a Monte Carlo estimate based on S samples from the
covariance of each document, computed as follows:

E[π:d] =
1

S

S∑
s=1

πs:d (3)

Cov[π:d] =
1

S

S∑
s=1

(πs:d − E[π:d])(π
s
:d − E[π:d])

T (4)

Σ̂ =
1

D

D∑
d=1

Cov(π:d) (5)
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Here, πs:d is computed by mapping a single sample of v:d, conditioned on the learned model param-
eters, through the logistic stick breaking transformation. For our visualizations, we set S = 5000
for each document d. We used a similar Monte Carlo estimator for the LDA model, conditioned on
its Dirichlet topic weights α.

A.4 Chib Style Estimation of Predictive Likelihoods

The Chib style estimator can be used to approximate the predictive likelihood of a held out document
by marginalizing out the topic assignment variables zd, and topic weights v:d and u:d, to obtain
p(wd | ζ,Γ), where wd refers to the set of N words in a held out document d, ζ = {A,Ω, η, φ, λV }
are the parameters learned from training data, and Γ is the set of hyperparameters specified before
training. The Chib-style estimator is based on a distinguished high-probability set of latent variables
(z∗d , v

∗
:d, u

∗
:d), chosen so that:

p(wd | ζ,Γ) =
p(wd, z

∗
d , v
∗
:d, u

∗
:d | ζ,Γ)

p(z∗d , v
∗
:d, u

∗
:d | wd, ζ,Γ)

(6)

p(wd | ζ,Γ) ≈ p(w:d, z
∗
d , v
∗
:d, u

∗
:d | ζ,Γ)

1
S

∑S
s=1 T (z∗d , v

∗
:d, u

∗
:d ← zsd, v

s
:d, u

s
:d)

(7)

where T (z∗d , v
∗
:d, u

∗
:d ← zsd, v

s
:d, u

s
:d) is a reversible Markov chain operator used to numerically ap-

proximate the marginalization of zd, v:d, and u:d by calculating the transition probabilities from S
samples from their respective posterior given wd. These can be obtained via our standard Gibbs
sampling updates for zd and u:d, and our Metropolis-Hastings independence sampler for v:d which
we denote by MH(·). Depending on the direction of this chain, the respective posterior distributions
used to evaluate the transition operators will be different. We denote the forward transition operator
as T (z∗,v∗,u∗ ← zs,vs,us) and the reverse transition operator as T̃ (z∗,v∗,u∗ ← zs,vs,us)
which can be defined as follows:

T (z∗,v∗,u∗ ← zs,vs,us) = p(z∗ | vs, zs)q(v∗ | vs, z∗,us)p(u∗ | v∗) (8)

T̃ (z∗,v∗,u∗ ← zs,vs,us) = p(z∗ | v∗, zs)q(v∗ | vs, zs,u∗)p(u∗ | vs) (9)

The log posterior distributions have the following form for the forward transition T (·):

log p(z∗ | vs,zs,Ω) =

N∑
n=1

log

[
p(wdn | zsdn = z∗dn)p(zsdn = z∗dn | πs)∑K

k=1 p(wdn | zs = k)p(zs = k | πs)

]
(10)

log q(v∗ | vs,z∗,us) = logN(v∗ | Aus, L) + min

[
0,

K∑
k=1

n∗
k log π∗

k −
K∑

k=1

n∗
k log πs

k

]
(11)

log p(u∗ | v∗) = logN(u∗ | (IK̄ +ATLA)−1(ATLv∗ + ηTφd), (IK̄ +ATLA)−1) (12)

Our stick breaking weights for v:d are constructed as πskd = ψ(vskd)
∏k−1
`=1 ψ(−vs`d), and the topic

counts for document d are denoted by nsk =
∑N
n=1 δ(z

s
dn, k). The precision matrix for u:d under

our prior is denoted by L = λV IK̄ .

As in previous applications of similar Chib-style estimators, we set the length of the transition chain
to be S = 1000, and run T = 1000 iterations to determine a high posterior probability state. Due to
the use of a Metropolis-Hastings proposal, we need to reweight the final predictive likelihood by the
probability of accepting the first sample of vs from the high posterior state; runs where the proposal
is rejected produce a likelihood estimate of zero. Since the entries of vkd are independent in our
posterior, we empirically estimate the probabilities of accepting each entry and use that estimate to
determine the final predictive likelihood. For the NIPS corpus, we set the number of samples to
estimate these rejection probabilities to R = 25, 000.
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Algorithm: Chib Style Estimator of Marginal Likelihood for Document d

1: Fix (ζ,Γ) for each document d
2: for t = 1 : T do
3: Sample vt:d, z

t
d, u

t
:d from MCMC proposals to reach a high posterior probability state.

4: end for
5: Set u∗ = ut:d,v

∗ = vt:d, and z∗ = ztd
6: Sample s ∼ Unif(1, 2, . . . , S)

7: for n = 1 : N do
8: Sample zsdn ∼ Mult(θs: ) where θsk =

p(wdn|z∗dn=k)p(z∗dn=k|πs)∑K
`=1 p(wdn|z∗dn=`)p(z∗dn=`|πs)

9: end for
10: for 1 : K̄ do
11: for 1 : R do
12: Sample vrkd ∼ MH(v∗, zs,u∗, ζ)

13: if [1−
∑K̄
k=1 δ(v

r
kd, v

∗
kd)] > 0 then

14: Set vs = vr:d
15: end if
16: end for
17: ρk =

1−
∑R

r=1 δ(v
r
kd,v

∗
kd)

R

18: end for
19: Sample us ∼ N((IK̄ +ATLA)−1(ATLvs + ηTφ:d), (IK̄ +ATLA)−1)

20: Begin Forward and Backward Chain
21: for i = (s+ 1) : S do
22: for n = 1 : N do
23: Sample zidn ∼ Mult(θi−1

: ) where θi−1
k =

p(wdn|zi−1
dn )p(zi−1

dn |π
i−1)∑K

`=1 p(wdn|zi−1=`)p(zi−1=`|πi−1)

24: end for
25: for k = 1 : K̄ do
26: Sample vikd ∼ MH(vi−1, zi,ui−1, ζ)

27: end for
28: Sample ui ∼ N((IK̄ +ATLA)−1(ATLvi + ηTφ:d), (IK̄ +ATLA)−1)

29: Calculate T (z∗,v∗,u∗ ← zi,vi,ui)

30: end for
31: for j = (s− 1) : −1 : 1 do
32: Sample uj ∼ N((IK̄ +ATLA)−1(ATLvj+1 + ηTφ:d), (IK̄ +ATLA)−1)

33: for k = K̄ : −1 : 1 do
34: Sample vjkd ∼ MH(vj+1, zj+1,uj , ζ)

35: end for
36: for n = N : −1 : 1 do
37: Sample zjdn ∼ Mult(θj+1

: ) where θj+1
k =

p(wdn|zj+1
dn )p(zj+1

dn |π
j)∑K

`=1 p(wdn|zj+1=`)p(zj+1=`|πj)

38: end for
39: Calculate T̃ (z∗,v∗,u∗ ← zj ,vj ,uj)

40: end for
41: p(w | Ω, η, φ, λV , β) ≈ p(w,z∗,v∗,u∗|Ω,η,φ,λV ,β)

∏K̄
k=1 ρk

1
S

∑S
s=1 T (z∗,v∗,u∗←zs,vs,us)
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