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Abstract

Probabilistic programming languages allow modelers t@i$pa stochastic pro-
cess using syntax that resembles modern programming lgagudecause the
program is in machine-readable format, a variety of tealescgfrom compiler de-
sign and program analysis can be used to examine the seuftthre distribution
represented by the probabilistic program. We show howstandard interpreta-
tionsof probabilistic programs can be used to craft efficientriefiee algorithms:
information about the structure of a distribution (such esdgents or dependen-
cies) is generated as a monad-like side computation whidewing the program.
These interpretations can be easily coded using specipbpe objects and oper-
ator overloading. We implement two examples of nonstanddsdpretations in
two different languages, and use them as building blocktwstruct inference
algorithms: automatic differentiation, which enablesdigat based methods, and
provenance tracking, which enables efficient construatfaglobal proposals.

1 Introduction

Probabilistic programming simplifies the development alyabilistic models by allowing modelers
to specify a stochastic process using syntax that resemigdern programming languages. These
languages permit arbitrary mixing of deterministic ancthtistic elements, resulting in tremendous
modeling flexibility. The resulting programs define probhiabic models that serve as prior distribu-
tions: running the (unconditional) program forward mamyes results in a distribution over execu-
tion traces, with each trace being a sample from the prioantptes includeLoG [13], Bayesian
Logic Programs [10]BAL [18], CHURCH [6], Stochastic MTLAB [28], andHANSEI [11].

The primary challenge in developing such languages is Bleailaference. Inference can be viewed
as reasoning about the posterior distribution over exenutaces conditioned on a particular pro-
gram output, and is difficult because of the flexibility théseguages present: in principle, an
inference algorithm must behave reasonably for any prograiser wishes to write. Sample-based
MCMC algorithms are the state-of-the-art method, due to gimplicity, universality, and compo-
sitionality. But in probabilistic modeling more generakgfficient inference algorithms are designed
by taking advantage of structure in distributions. How canfimd structure in a distribution de-
fined by a probabilistic program? A key observation is thabedanguages, such asiGRCH and
Stochastic MTLAB, are defined in terms of an existing (non-probabilisticplasge. Programs in
these languages may literally be executed in their native@mments—suggesting that tools from
program analysis and programming language theory can kealged to find and exploit structure
in the program for inference, much as a compiler might find exploit structure for performance.

Here, we show howonstandard interpretationsf probabilistic programs can help craft efficient
inference algorithms. Information about the structure distribution (such as gradients, dependen-
cies or bounds) is generated as a monad-like side computatide executing the program. This
extra information can be used to, for example, constructiddbl proposals, or search efficiently
for a local maximum. We focus on two such interpretationdornatic differentiation and prove-
nance tracking, and show how they can be used as buildingtbtocconstruct efficient inference



algorithms. We implement nonstandard interpretationsvin different languages (@JRcH and
Stochastic MTLAB), and experimentally demonstrate that while they typycaitur some addi-
tional execution overhead, they dramatically improverafee performance.

2 Background and Related Work Alg. 1: A Gaussian-Gamma mixture

We begin by outlining our setup, following [28]. We de*7~ 5 7=1:1000
fine an unconditioned probabilistic program to be a pa,zﬁ if ( rénd >0.5)
rameterless functiorf with an arbitrary mix of stochas- . )

| Lo . : X(i) = randn;

tic and deterministic elements (hereafter, we will use thg. 450

term function and program interchangeably). The funcgﬁ X(i) = gammarnd;
tion f may be written in any language, but our runningg. o - ’

example will be MaTLAB. We allow the function to be
arbitrarily complex inside, using any additional functson
recursion, language constructs or external libraries shes. The only constraint is that the func-
tion must be self-contained, with no external side-effedtich would impact the execution of the
function from one run to another.

7: end;

The stochastic elements ¢fmust come from a set of known, fixedementary random primitives
or ERPs. Complex distributions are constructed compasitip, using ERPs as building blocks. In
MATLAB, ERPs may be functions suchrand (sample uniformly from [0,1]) or andn (sample
from a standard normal). Higher-order random primitiveshsas nonparametric distributions, may
also be defined, but must be fixed ahead of time. Formall§; le¢ the set of ERP types. We assume
that each type € T is a parametric family of distributions («|6;), with parameters;.

Now, consider what happens while executifigAs f is executed, it encounters a series of ERPs.
Alg. 1 shows an example of a simpjewritten in MATLAB with three syntactic ERPst and,
randn, andganmar nd. During execution, depending on the return value of eachtealand,
different paths will be taken through the program, and dififie ERPs will be encountered. We call
this path arexecution traceA total of 2000 random choices will be made when executing fthi

Let fi|z,,... ., DE thek’'th ERP encountered while executirfgand letr;, be the value it returns.
Note that the parameters passed to/thle ERP may change depending on previayss (indeed,
its type may also change, as well as the total number of ERMs)denote by: all of the random
choices which are made b so f defines the probability distributiop(x). In our exampleg €
R20990_ The probabilityp(z) is the product of the probability of each individual ERP coi

K
p(l’) = Hptk($k|9tk>3317' o 75(:]971) (1)
k=1

again noting explicitly that types and parameters may depelsitrarily on previous random choices.
To simplify notation, we will omit the conditioning on the luas of previous ERPs, but again wish
to emphasize that these dependencies are critical andtdamimgnored. Byfy, it should therefore
be understood that we medp,, ... »,_,, and byp;, (xx|0:, ) we mearp;, (vx|0s, , x1,- -, Tp—1).

Generative functions as described above are, of coursgi@asite. A much harder problem, and
our goal in this paper, is to reason about the posterior ¢ion@l distributionp(z|y), where we
definey to be a subset of random choices which we condition on andn(iabaise of notation)

to be the remaining random choices. For example, we may ttondi on theX(i ) ’s, and reason
about the sequence ofind’s most likely to generate th¥(i )’s. For the rest of this paper, we
will drop y and simply refer tg(x), but it should be understood that the goal is always to perfor
inference in conditional distributions.

2.1 Nonstandard Interpretations of Probabilistic Programs

With an outline of probabilistic programming in hand, we ntmn to nonstandard interpretations.
The idea of nonstandard interpretations originated in rhibd®ry and mathematical logic, where it
was proposed that a set of axioms could be interpreted srdift models. For example, differential
geometry can be considered a nonstandard interpretatidassical arithmetic.

In programming, a nonstandard interpretation replacesldineain of the variables in the program
with a new domain, and redefines the semantics of the opsratdhe program to be consistent
with the new domain. This allows reuse of program syntax evimiplementing new functionality.
For example, the expression % b” can be interpreted equally well if andb are either scalars or



matrices, but the " operator takes on different meanings. Practically, masgful nonstandard
interpretations can be implemented with operator oveif@adrariables are redefined to be objects
with operators that implement special functionality, sastiracing, reference counting, or profiling.

For the purposes of inference in probabilistic programswileaugment each random choiaeg,

with additional side information;, and replace each; with the tuple(zy, si). The native inter-
preter for the probabilistic program can then interpretdberce code as a sequence of operations
on these augmented data types. For a recent example of thigfer the reader to [24].

3 Automatic Differentiation

For probabilistic models with many continuous-valued k@ndvariables, the gradient of the like-
lihood V. p(z) provides local information that can significantly improve tproperties of Monte-
Carlo inference algorithms. For instance, Langevin Mdbéglo [20] and Hamiltonian MCMC [15]
use this gradient as part of a variable-augmentation tgokenfdescribed below). We would like
to be able to use gradients in the probabilistic-progrartinggtbut p(x) is represented implicitly
by the program. How can we compute its gradient? Weaugematic differentiatiofAD) [3, 7],

a nonstandard interpretation that automatically congiigp(x). The automatic nature of AD is
critical because it relieves the programmer from hand-ading derivatives for each model; more-
over, some probabilistic programs dynamically create detderandom variables making simple
closed-form expressions for the gradient very difficult taifi

Unlike finite differencing, AD computes an exact derivatdfex functionf at a point (up to machine
precision). To do this, AD relies on the chain rule to decosapiie derivative of into derivatives

of its sub-functions: ultimately, known derivatives ofmlentary functions are composed together to
yield the derivative of the compound function. This comftosican be computed as a nonstandard
interpretation of the underlying elementary functions.

The derivative computation as a composition of the dermeatiof the elementary functions can be
performed in different orders. lforward modeAD [27], computation of the derivative proceeds by
propagating perturbations of the input toward the outpthiis Tan be done by a nonstandard inter-
pretation that extends each real value to the first two teffrits ®aylor expansion [26], overloading
each elementary function to operate on these real “polyalsiniBecause the derivatives ffat c
can be extracted from the coefficientsedf f(c + €) , this allows computation of the gradient. In
reverse modé\D [25], computation of the derivative proceeds by propagasensitivities of the
output toward the input. One way this can be done is by a nodatd interpretation that extends
each real value into a “tape” that captures the trace of thkecamputation which led to that value
from the inputs, overloading each elementary function tsémentally construct these tapes. Such
a tape can be postprocessed, in a fashion analogous to bpakjation [21], to yield the gradient.
These two approaches have complementary computatiodabitifa: reverse mode (which we use in
our implementation) can compute the gradient of a funcfiorR™ — R with the same asymptotic
time complexity as computing, but not the same asymptotic space complexity (due to itd nee
for saving the computation trace), while forward mode camgote the gradient with these same
asymptotic space complexity, but with a factor@fr) slowdown (due to its need for constructing
the gradient out of partial derivatives along each indepandariable).

There are implementations of AD for many languages, indgdicHEME(e.g., [17]), FORTRAN
(e.g.,ADIFOR[2]), C (e.g.,ADOL—C [8]), C++ (e.g.,FADBAD++[1]), MATLAB (e.g.,INTLAB [22]),
and MAPLE (e.g.,GRADIENT[14]). Seemwwv. aut odi f f . or g. Additionally, overloading and AD
are well established techniques that have been applied¢binelearning, and even to application-
specific programming languages for machine learning, eigsH[12] and DrNA[4]. In particular,
DYNA applies a nonstandard interpretation foandV as a semiringX and-+, + andmax, ...) in

a memoizing ROLOGto generalize Viterbi, forward/backward, inside/outsietie. and uses AD to
derive the outside algorithm from the inside algorithm amgprt parameter estimation, but unlike
probabilistic programming, it does not model general séstic processes and does not do general
inference over such. Our use of overloading and AD differthat it facilitates inference in com-
plicated models of general stochastic processes formiutetgrobabilistic programs. Probabilistic
programming provides a powerful and convenient frameworkfdrmulating complicated models
and, more importantly, separating such models from orthabimference mechanisms. Moreover,
overloading provides a convenient mechanism for implemgmhany such inference mechanisms
(e.g., Langevin MC, Hamiltonian MCMC, Provenance Trackiagdemonstrated below) in a prob-
abilistic programming language.



(define (perlin-pt x y keypt power)
(* 255 (sum (map (| anbda (p2 pow)
(let ((x0 (floor (* p2 x))) (y0 (floor (* p2y))))
(* pow (2d-interp (keypt x0 y0) (keypt (+ 1 x0) y0) (keypt x0 (+ 1 y0)) (keypt (+ 1 x0) (+ 1y0))))))
power s-of -2 power))))

(define (perlin xs ys power)
(let ([keypt (mem (lanbda (x y) (/ 1 (+ 1 (exp (- (gaussian 0.0 2.0)))))))])
(map (lanbda (x) (map (lanbda (y) (perlin-pt x y keypt power)) xs)) ys)))

Figure 1: Code for the structured Perlin noise generatbri nt er p is B-spline interpolation.

3.1 Hamiltonian MCMC —
To illustrate the power of AD in proba-Alg- 2: Hamiltonian MCMC

bilistic programming, we build on Hamil- 1: repeat forever

tonian MCMC (HMC), an efficient algo- 2:  Gibbs step:

rithm whose popularity has been some-3:  Draw momentummn ~ N (0, o2)

what limited by the necessity of comput- 4.  Metropolis step:

ing gradients—a difficult task for com- 5:  Start with current statér, m)

plex models. Neal [15] introduces HMC 6:  Simulate Hamiltonian dynamics to giye’, m’)
as an inference method which “produces7.  Accept w/p = min[1, e(—# (&' sm")+H(z.m))]
distant proposals for the Metropolis algo-g: end:

rithm, thereby avoiding the slow explo-
ration of the state space that results from the diffusivealsiin of simple random-walk proposals.”
HMC begins by augmenting the states space with “momentuiablas”m. The distribution over
this augmented space & (*) | where the Hamiltonian functiofl decomposed into the sum of
a potential energy ter/(z) = —Inp(z) and a kinetic energy<(m) which is usually taken to
be Gaussian. Inference proceeds by alternating betweeblss Giep and Metropolis step: fixing
the current state, a new momentumn is sampled from the prior oven; thenx andm are up-
dated together by following a trajectory according to Haomian dynamics. Discrete integration
of Hamiltonian dynamics requires the gradientfdf and must be done with a symplectic (i.e. vol-
ume preserving) integrator (following [15] we use the Leagfmethod). While this is a complex
computation, incorporating gradient information draralty improves performance over vanilla
random-walk style MH moves (such as Gaussian drift kernelsjl its statistical efficiency also
scales much better with dimensionality than simpler metHd8]. AD can also compute higher-
order derivatives. For example, Hessian matrices can lsktas®nstruct blocked Metropolis moves
[9] or proposals based on Newton’s method [19], or as parti@ff@nnian manifold methods [5].

3.2 Experiments and Results

We implemented HMC by extendingHg&R [28], a lightweight implementation of the HURCH
language which provides simple, but universal, MH infeeend/e used used an implementation of
AD based on [17] that uses hygienic operator overloadingtbath forward and reverse mode AD
for Scheme (the target language of thee compiler).

The goal is to comput® .p(z). By Eq. 1,p(x) is the product of the individual choices made by
eachz; (though each probability can depend on previous choices,igfh the program evaluation).
To computep(z), BHER executes the corresponding program, accumulating lietls. Each time

a continuous ERP is created or retrieved, we wrap it in a “tapgect which is used to track gradient
information; as the likelihoog(z) is computed, these tapes flow through the program and through
appropriately overloaded operators, resulting in a depecylgraph for the real portion of the com-
putation. The gradient is then computed in reverse modebbgk-propagating” along this graph.
We implement an HMC kernel by using this gradient in the leagfntegrator. Since program states
may contain a combination of discrete and continuous ERBsjsg an overall cycle kernel which
alternates between standard MH kernel for individual éiterandom variables and the HMC ker-
nel for all continuous random choices. To decrease burime, twe initialize the sampler by using
annealed gradient ascent (again implemented using AD).

We ran two sets of experiments that illustrate two diffefeenefits of HMC with AD: automated
gradients of complex code, and good statistical efficiency.

Structured Perlin noise generation. Our first experiment uses HMC to generate modified Perlin
noise with soft symmetry structure. Perlin noise is a procaidexture used by computer graphics
artists to add realism to natural textures such as cloudssgor tree bark. We generate Perlin-
like noise by layering octaves of random but smoothly vagyimnctions. We condition the result
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Figure 2: On the left: samples from the structured Perlis@gienerator. On the right: convergence
of expected mean for a draw from a 3D spherical Gaussian tton€eld on lying on a line.

on approximate diagonal symmetry, forcing the resultinggeto incorporate additional structure
without otherwise skewing the statistics of the image. Nlo&t the MAP solution for this problem is

uninteresting, as it is a uniform image; it is the variatiansund the MAP that provide rich texture.
We generated 48x48 images; the model had roughly 1000 \esiab

Fig. 2 shows the result via typical samples generated by HM@re the approximate symmetry is
clearly visible. A code snippet demonstrating the compyeaf the calculations is shown in Fig. 1;
this experiment illustrates how the automatic nature ofgttaglients is most helpful, as it would be
time consuming to compute these gradients by hand—pantigidance we are free to condition
using any function of the image.

Complex conditioning. For our second example, weNormal distribution noisily condi-
demonstrate the improved statistical efficiency of th@ned on line (2D projection)
samples generated by HMC versusHeR's standard — . 7~ N, 0)

MCMC algorithm. The goal is to sample points from a™ T dist(line,z)
complex 3D distribution, defined by starting with a Gaus2: ¥ ~ Bernoulli(e™ neie )

sian prior, and sampling points that are noisily condi3: Condition onk = 1

tioned to be on a line running throudt?®. This creates
complex interactions with the prior to yield a smooth, but 2
strongly coupled, energy landscape.

Fig. 2 compares our HMC implementation wittHBR's e e
standard MCMC engine. The x-axis denotes samples, -1.5-1.0 - 05 10 15
while the y-axis denotes the convergence of an estimator
of certain marginal statistics of the samples. We see that 5
this estimator converges much faster for HMC, implying
that the samples which are generated are less autocodrelaféirming that HMC is indeed making
better distal moves. HMC is about 5x slower than MCMC for #periment, but the overhead is
justified by the significant improvement in the statisticaality of the samples.

4 Provenance Tracking for Fine-Grained Dynamic DependencyAnalysis

One reason gradient based inference algorithms are &#eistithat the chain rule of derivatives
propagates information backwards from the data up to thegsa variables. But gradients, and the
chain rule, are only defined for continuous variables. Isdl@ecorresponding structure for discrete
choices? We now introduce a new nonstandard interprethtisad on provenance tracking (PT). In
programming language theory, the provenance of a varialtfeeihistory of variables and computa-
tions that combined to form its value. We use this idea tcktfa@-grained dependency information
between random values and intermediate computations g timebine to form a likelihood. We
then use this provenance information to construct goodajlpboposals for discrete variables as
part of a novel factored multiple-try MCMC algorithm.

4.1 Defining and Implementing Provenance Tracking

Like AD, PT can be implemented with operator overloadingc&ese provenance information is
much coarser than gradient information, the operators inlij@cts have a particularly simple form;
most program expressions can be covered by considering ade@s. LefX denote the sefz;}

of all (not necessarily random) variables in a program. Rét) C X define the provenance of a
variablex. Given R(x), the provenance of expressions involvingan be computed by breaking



down expressions into a sequence of unary operations ybaparations, and function applications.
Constants have empty provenances.

Let  andy be expressions in the program (consisting of an arbitraryohivariables, constants,
functions and operators). For a binary operatio® y, the provenanc&(z ® y) of the result is
defined to beR(z ® y) = R(z) U R(y). Similarly, for a unary operation, the provenamgeoz) =
R(x). For assignments; = y = R(z) = R(y). For a function,R(f(z,y,...)) may be computed
by examining the expressions withjf) a worst-case approximation B(f(z,y,...)) = R(z) U
R(y)---. A few special cases are also worth noting. Strictly spe@kine previous rules track a
superset of provenance information because some fundaimtheperations are constant for certain
inputs. In the case of multiplication,* 0 = 0, soR(x % 0) = {}. Accounting for this gives tighter
provenances, implying, for example, that special conasittans apply to sparse linear algebra.

In the case of probabilistic programming, recall that rand@riables (or ERPS) are represented as
stochastic functiong; that accept parametefls. Whenever a random variable is conditioned, the
output of the correspondingfj is fixed; thus, while thdikelihood of a particular output of; depends
on#;, thespecific outpuof f; does not. For the purposes inference, therefB(¢;(0;)) = {}.

4.2 Using Provenance Tracking as Part of Inference

Provenance information could be used in many ways. Herellugtrate one use: to help construct
good block proposals for MH inference. Our basic idea is tastwct a good global proposal by
starting with a random global proposal (which is unlikelyb® good) and then inhibiting the bad
parts. We do this by allowing each element of the likelihomtvbte” on which proposals seemed
good. This can be considered a factored version of a multipl®ICMC algorithm [16].

The algorithm is shown in Fig. 3. Let” be the starting state. In step (2), we propose a new state
29, This new state changes many ERPs at once, and is unliketygodx (for the proof, we require

thatxio’ # z¢ for all 7). In step (3), we accept or reject each element of the propeszd on a
functiona.. Our choice ofx (Fig. 3, left) uses PT, as we explain below. In step (4) we taosa
new proposak? by “mixing” two states: we set the variables in the acceptdigo the values of
z9’, and we leave the variables in the rejectediet their original values in:©. In steps (5-6) we
compute the forward probabilities. In steps (7-8) we sarpke possible path backwards fran
to ¢, with the relevant probabilities. Finally, in step (9) weapt or reject the overall proposal.

We usea(xo,:vo') to allow the likelihood to “vote” in a fine-grained way for wdhi proposals
seemed good and which seemed bad. To do this, we computd using PT to track how each
2% influences the overall likelihoog(z®). Let D(i; z©) denote the “descendants” of variabig,

defined as all ERPs Whose likelihoad impacted. We also use PT to compw(eco'), again
trackmg dependent®(i; z°"), and letD(i) be the joint set of ERPs that influences in either state
29 or 29", We then useD(i), p(z°) andp(z°") to estimate the amount by which each constituent

elementz©’ in the proposal changed the likelihood. We assign “creditéachi as if it were the
only proposal- that is, we assume that if, for example, the likelihood wemtit was entirely due to
the change in¢. Of course, the variables’ effects are not truly indepetidéis is a fully-factored
approximation to those effects. The finals shown in Fig. 3 (left), where we defingx ;) to be
the likelihood ofonly the subset of variables that impacted.

Here, we prove that our algorithm is valid MCMC by followingg] and showing detailed balance.
To do this, we must integrate over all possible rejectedspathhe negative bitsQ andz} !

, M MIPMIP]WI
p(a®)P(xM]20) = / / Q% Q% PPN Q) win {1, B AT T
/ [, % @it win {na)Q PY P o QA" PA )

M/ / Q%[Q%[IPMIPRHQR mind 1, p(xO)QQ/PXIPg
" p(zM)

QMIpMI pMI
= p")P (wOIxM)

where the subtlety to the equivalence is that the rejecmﬁf andz¥! have switched roles]

6



Alg. 3: Factored Multiple-Try MH

1: Begin in state:”. Assume it is composed of individual ERRS = {0, --- ,z{ }.

2: Propose a new state for many ERPs. Fer1l, - - - , k, proposer? ~ Q(z° [|z°) s.t.a? # .

3: Decide to accept or reject each element8f. This test can depend arbitrarily afY andz®’, but must
decide for each ERP independently;detz®, z°") be the probability of accepting® . Let A be the set
of indices of accepted proposals, aRdhe set of rejected ones.

4: Construct a new state™ = {x?/ RS A} U {yc]O 1j € R}. This new state mixes new values for the
ERPs from the accepted sétand old values for the ERPs in the rejectedBet

5: Let PA’ = [, , (22, 2°") be the probability of accepting the ERPsdnand letP}! = [Ter(l—
a;(2°,2°")) be the probability of rejecting the ERPs i

6: LetQS = [T,c4 Q' [2°) andQ] = [T, Q= [°).

7: Construct a new state’’. Propose new values for all of the rejected ERPs usitgas the start state,

but leave ERPs in the accepted set at their original value. jFer R let z}'' ~ Q(-|z™). Then,
oM — {x? = A}U{xjy“ 1j € R}_
8: LetPM! — [Lica (@™, zM7), and letPM! = HjeR(l — (@M, zMT)).

9: Acceptz™ with probabilitymin {1, (p(z™) QYT PMT PMT) /(p(z°) Q’P%ng)}.

Accepted set
Rejected set

Individual ERPs

Alg. 4: A PT-based Acceptance Test

1: The PT algorithm implements; (x, z'). % 5 s
2: Computep(z), trackingD(x;; x)
3: Computep(a’), trackingD(z;; ') OOO Y
4: Let D(i) = D(x;;2) U D(z452") —Oo o
. . PP ) o
5 Letay (l‘, JC/) = min {1’ P(M)P(wDiz‘;) } Start ProJ;osed Mixed
state state state Reverse path

Figure 3: The factored multiple-try MH algorithm (top), tRd-based acceptance test (left) and an
illustration of the process of mixing together differerdémlentary proposals (right).

4.3 Experiments and Results

We implemented provenance tracking and in StochastaMB [28] by leveraging M\TLAB’S
object oriented capabilities, which provides full operat@erloading. We tested on four tasks: a
Bayesian “mesh induction” task, a small QMR problem, prdlixte matrix factorization [23] and
an integer-valued variant of PMF. We measured performap@xamining likelihood as a function
of wallclock time; an important property of the provenanzcking algorithm is that it can help
mitigate constant factors affecting inference perforneanc

Bayesian mesh induction. The BMI task is simple: a|g. 5: Bayesian Mesh Induction
given a prior distribution over meshes and a target im - -
age, sample a mesh which, when rendered, looks like tHe function X = bmi( basemesh )

target image. The prior is a Gaussian centered around?a Mesh = basenesh + randn;
“mean mesh,” which is a perfect sphere; Gaussian noise  Img = render( mesh );

is added to each vertex to deform the mesh. The modél X =img + randn;

is shown in Alg. 5. The rendering function is a custom:_€nd;

OPENGL renderer implemented as a MEX function. No

gradients are available for this renderer, but it is realslyn@asy to augment it with provenance
information recording vertices of the triangle that wersp@nsible for each pixel. This allows us to
make proposals to mesh vertices, while assigning credéas pixel likelihoods.

Results for this task are shown in Fig. 4 (“Face”). Even thotlge renderer is quite fast, MCMC
with simple proposals fails: after proposing a change toglsivariable, it must re-render the image
in order to compute the likelihood. In contrast, making é&rglobal proposals is very effective.
Fig. 4 (top) shows a sequence of images representing burftiie model as it starts from the initial
condition and samples its way towards regions of high litledid. A video demonstrating the results
is available athttp://www.mit.edu/ ~ wingated/papers/index.html
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Figure 4: Top: Frames from the face task. Bottom: resultsaneFQMR, PMF and Integer PMF.

QMR. The QMR model is a bipartite, binary model relating disedbétden) to symptoms (ob-
served) using a log-linear noisy-or model. Base rates agadiss can be quite low, so “explaining
away” can cause poor mixing. Here, MCMC with provenancekiragis effective: it finds high-
likelihood solutions quickly, again outperforming naiveOMIC.

Probabilistic Matrix Factorization. For the PMF task, we factored a matrxc R!100071000 wjith
99% sparsity. PMF places a Gaussian prior over two matrides, R'°00¢10 gndV/ ¢ R1000210,

for a total of 20,000 parameters. The model assumesAhat- NV (U; V", 1). In Fig. 4, we see
that MCMC with provenance tracking is able to find regions aicimhigher likelihood much more
quickly than naive MCMC. We also compared to an efficient haoded MCMC sampler which
is capable of making, scoring and accepting/rejecting 601000 proposals per second. Interest-
ingly, MCMC with provenance tracking is more efficient th&we hand-coded sampler, presumably
because of the economies of scale that come with making Igtobposals.

Integer Probabilistic Matrix Factorization. The Integer PMF task is like ordinary PMF, except
that every entry i/ andV is constrained to be an integer between 1 and 10. These amnstr
imply that no gradients exist. Empirically, this does notrseto matter for the efficiency of the
algorithm relative to standard MCMC: in Fig. 4 we again sesnthitic performance improvements
over the baseline StochasticAviAB sampler and the hand-coded sampler.

5 Conclusions

We have shown how nonstandard interpretations of prolstibilprograms can be used to extract
structural information about a distribution, and how tm&rmation can be used as part of a vari-
ety of inference algorithms. The information can take thenfof gradients, Hessians, fine-grained
dependencies, or bounds. Empirically, we have implementedsuch interpretations and demon-
strated how this information can be used to find regions df hilgelihood quickly, and how it can
be used to generate samples with improved statistical giepe&ersus random-walk style MCMC.
There are other types of interpretations which could preddditional information. For example,
interval arithmetic [22] could be used to provide boundssopart of adaptive importance sampling.

Each of these interpretations can be used alone or in conitereach other; one of the advantages
of the probabilistic programming framework is the cleanasafion of models and inference algo-
rithms, making it easy to explore combinations of inferealgorithms for complex models. More
generally, this work begins to illuminate the close conimet between probabilistic inference and
programming language theory. It is likely that other tecjueis from compiler design and program
analysis could be fruitfully applied to inference probleimgrobabilistic programs.
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