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Abstract

Probabilistic programming languages allow modelers to specify a stochastic pro-
cess using syntax that resembles modern programming languages. Because the
program is in machine-readable format, a variety of techniques from compiler de-
sign and program analysis can be used to examine the structure of the distribution
represented by the probabilistic program. We show hownonstandard interpreta-
tionsof probabilistic programs can be used to craft efficient inference algorithms:
information about the structure of a distribution (such as gradients or dependen-
cies) is generated as a monad-like side computation while executing the program.
These interpretations can be easily coded using special-purpose objects and oper-
ator overloading. We implement two examples of nonstandardinterpretations in
two different languages, and use them as building blocks to construct inference
algorithms: automatic differentiation, which enables gradient based methods, and
provenance tracking, which enables efficient constructionof global proposals.

1 Introduction
Probabilistic programming simplifies the development of probabilistic models by allowing modelers
to specify a stochastic process using syntax that resemblesmodern programming languages. These
languages permit arbitrary mixing of deterministic and stochastic elements, resulting in tremendous
modeling flexibility. The resulting programs define probabilistic models that serve as prior distribu-
tions: running the (unconditional) program forward many times results in a distribution over execu-
tion traces, with each trace being a sample from the prior. Examples includeBLOG [13], Bayesian
Logic Programs [10]IBAL [18], CHURCH [6], Stochastic MATLAB [28], andHANSEI [11].

The primary challenge in developing such languages is scalable inference. Inference can be viewed
as reasoning about the posterior distribution over execution traces conditioned on a particular pro-
gram output, and is difficult because of the flexibility theselanguages present: in principle, an
inference algorithm must behave reasonably for any programa user wishes to write. Sample-based
MCMC algorithms are the state-of-the-art method, due to their simplicity, universality, and compo-
sitionality. But in probabilistic modeling more generally, efficient inference algorithms are designed
by taking advantage of structure in distributions. How can we find structure in a distribution de-
fined by a probabilistic program? A key observation is that some languages, such as CHURCH and
Stochastic MATLAB , are defined in terms of an existing (non-probabilistic) language. Programs in
these languages may literally be executed in their native environments—suggesting that tools from
program analysis and programming language theory can be leveraged to find and exploit structure
in the program for inference, much as a compiler might find andexploit structure for performance.

Here, we show hownonstandard interpretationsof probabilistic programs can help craft efficient
inference algorithms. Information about the structure of adistribution (such as gradients, dependen-
cies or bounds) is generated as a monad-like side computation while executing the program. This
extra information can be used to, for example, construct good MH proposals, or search efficiently
for a local maximum. We focus on two such interpretations: automatic differentiation and prove-
nance tracking, and show how they can be used as building blocks to construct efficient inference
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algorithms. We implement nonstandard interpretations in two different languages (CHURCH and
Stochastic MATLAB ), and experimentally demonstrate that while they typically incur some addi-
tional execution overhead, they dramatically improve inference performance.

2 Background and Related Work Alg. 1: A Gaussian-Gamma mixture

1: for i=1:1000
2: if ( rand> 0.5 )
3: X(i) = randn;
4: else
5: X(i) = gammarnd;
6: end;
7: end;

We begin by outlining our setup, following [28]. We de-
fine an unconditioned probabilistic program to be a pa-
rameterless functionf with an arbitrary mix of stochas-
tic and deterministic elements (hereafter, we will use the
term function and program interchangeably). The func-
tion f may be written in any language, but our running
example will be MATLAB . We allow the function to be
arbitrarily complex inside, using any additional functions,
recursion, language constructs or external libraries it wishes. The only constraint is that the func-
tion must be self-contained, with no external side-effectswhich would impact the execution of the
function from one run to another.

The stochastic elements off must come from a set of known, fixedelementary random primitives,
or ERPs. Complex distributions are constructed compositionally, using ERPs as building blocks. In
MATLAB , ERPs may be functions such asrand (sample uniformly from [0,1]) orrandn (sample
from a standard normal). Higher-order random primitives, such as nonparametric distributions, may
also be defined, but must be fixed ahead of time. Formally, letT be the set of ERP types. We assume
that each typet ∈ T is a parametric family of distributionspt(x|θt), with parametersθt.

Now, consider what happens while executingf . As f is executed, it encounters a series of ERPs.
Alg. 1 shows an example of a simplef written in MATLAB with three syntactic ERPs:rand,
randn, andgammarnd. During execution, depending on the return value of each call to rand,
different paths will be taken through the program, and different ERPs will be encountered. We call
this path anexecution trace.A total of 2000 random choices will be made when executing thisf .

Let fk|x1,··· ,xk−1
be thek’th ERP encountered while executingf , and letxk be the value it returns.

Note that the parameters passed to thek’th ERP may change depending on previousxk’s (indeed,
its type may also change, as well as the total number of ERPs).We denote byx all of the random
choices which are made byf , sof defines the probability distributionp(x). In our example,x ∈
R

2000. The probabilityp(x) is the product of the probability of each individual ERP choice:

p(x) =

K
∏

k=1

ptk(xk|θtk , x1, · · · , xk−1) (1)

again noting explicitly that types and parameters may depend arbitrarily on previous random choices.
To simplify notation, we will omit the conditioning on the values of previous ERPs, but again wish
to emphasize that these dependencies are critical and cannot be ignored. Byfk, it should therefore
be understood that we meanfk|x1,··· ,xk−1

, and byptk(xk|θtk) we meanptk(xk|θtk , x1, · · · , xk−1).

Generative functions as described above are, of course, easy to write. A much harder problem, and
our goal in this paper, is to reason about the posterior conditional distributionp(x|y), where we
definey to be a subset of random choices which we condition on and (in an abuse of notation)x
to be the remaining random choices. For example, we may condition f on theX(i)’s, and reason
about the sequence ofrand’s most likely to generate theX(i)’s. For the rest of this paper, we
will drop y and simply refer top(x), but it should be understood that the goal is always to perform
inference in conditional distributions.

2.1 Nonstandard Interpretations of Probabilistic Programs
With an outline of probabilistic programming in hand, we nowturn to nonstandard interpretations.
The idea of nonstandard interpretations originated in model theory and mathematical logic, where it
was proposed that a set of axioms could be interpreted by different models. For example, differential
geometry can be considered a nonstandard interpretation ofclassical arithmetic.

In programming, a nonstandard interpretation replaces thedomain of the variables in the program
with a new domain, and redefines the semantics of the operators in the program to be consistent
with the new domain. This allows reuse of program syntax while implementing new functionality.
For example, the expression “a ∗ b” can be interpreted equally well ifa andb are either scalars or
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matrices, but the “∗” operator takes on different meanings. Practically, many useful nonstandard
interpretations can be implemented with operator overloading: variables are redefined to be objects
with operators that implement special functionality, suchas tracing, reference counting, or profiling.

For the purposes of inference in probabilistic programs, wewill augment each random choicexk

with additional side informationsk, and replace eachxk with the tuple〈xk, sk〉. The native inter-
preter for the probabilistic program can then interpret thesource code as a sequence of operations
on these augmented data types. For a recent example of this, we refer the reader to [24].

3 Automatic Differentiation
For probabilistic models with many continuous-valued random variables, the gradient of the like-
lihood ∇xp(x) provides local information that can significantly improve the properties of Monte-
Carlo inference algorithms. For instance, Langevin Monte-Carlo [20] and Hamiltonian MCMC [15]
use this gradient as part of a variable-augmentation technique (described below). We would like
to be able to use gradients in the probabilistic-program setting, butp(x) is represented implicitly
by the program. How can we compute its gradient? We useautomatic differentiation(AD) [3, 7],
a nonstandard interpretation that automatically constructs∇xp(x). The automatic nature of AD is
critical because it relieves the programmer from hand-computing derivatives for each model; more-
over, some probabilistic programs dynamically create or delete random variables making simple
closed-form expressions for the gradient very difficult to find.

Unlike finite differencing, AD computes an exact derivativeof a functionf at a point (up to machine
precision). To do this, AD relies on the chain rule to decompose the derivative off into derivatives
of its sub-functions: ultimately, known derivatives of elementary functions are composed together to
yield the derivative of the compound function. This composition can be computed as a nonstandard
interpretation of the underlying elementary functions.

The derivative computation as a composition of the derivatives of the elementary functions can be
performed in different orders. Inforward modeAD [27], computation of the derivative proceeds by
propagating perturbations of the input toward the output. This can be done by a nonstandard inter-
pretation that extends each real value to the first two terms of its Taylor expansion [26], overloading
each elementary function to operate on these real “polynomials”. Because the derivatives off at c
can be extracted from the coefficients ofǫ in f(c + ǫ) , this allows computation of the gradient. In
reverse modeAD [25], computation of the derivative proceeds by propagating sensitivities of the
output toward the input. One way this can be done is by a nonstandard interpretation that extends
each real value into a “tape” that captures the trace of the real computation which led to that value
from the inputs, overloading each elementary function to incrementally construct these tapes. Such
a tape can be postprocessed, in a fashion analogous to backpropagation [21], to yield the gradient.
These two approaches have complementary computational tradeoffs: reverse mode (which we use in
our implementation) can compute the gradient of a functionf : Rn → R with the same asymptotic
time complexity as computingf , but not the same asymptotic space complexity (due to its need
for saving the computation trace), while forward mode can compute the gradient with these same
asymptotic space complexity, but with a factor ofO(n) slowdown (due to its need for constructing
the gradient out of partial derivatives along each independent variable).

There are implementations of AD for many languages, including SCHEME(e.g., [17]), FORTRAN
(e.g.,ADIFOR[2]), C (e.g.,ADOL–C [8]), C++ (e.g.,FADBAD++[1]), MATLAB (e.g.,INTLAB [22]),
and MAPLE (e.g.,GRADIENT [14]). Seewww.autodiff.org. Additionally, overloading and AD
are well established techniques that have been applied to machine learning, and even to application-
specific programming languages for machine learning, e.g.,LUSH[12] and DYNA [4]. In particular,
DYNA applies a nonstandard interpretation for∧ and∨ as a semiring (× and+, + andmax, . . .) in
a memoizing PROLOG to generalize Viterbi, forward/backward, inside/outside, etc. and uses AD to
derive the outside algorithm from the inside algorithm and support parameter estimation, but unlike
probabilistic programming, it does not model general stochastic processes and does not do general
inference over such. Our use of overloading and AD differs inthat it facilitates inference in com-
plicated models of general stochastic processes formulated as probabilistic programs. Probabilistic
programming provides a powerful and convenient framework for formulating complicated models
and, more importantly, separating such models from orthogonal inference mechanisms. Moreover,
overloading provides a convenient mechanism for implementing many such inference mechanisms
(e.g., Langevin MC, Hamiltonian MCMC, Provenance Tracking, as demonstrated below) in a prob-
abilistic programming language.
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(define (perlin-pt x y keypt power)
(* 255 (sum (map (lambda (p2 pow)

(let ((x0 (floor (* p2 x))) (y0 (floor (* p2 y))))
(* pow (2d-interp (keypt x0 y0) (keypt (+ 1 x0) y0) (keypt x0 (+ 1 y0)) (keypt (+ 1 x0) (+ 1 y0))))))

powers-of-2 power))))

(define (perlin xs ys power)
(let ([keypt (mem (lambda (x y) (/ 1 (+ 1 (exp (- (gaussian 0.0 2.0)))))))])

(map (lambda (x) (map (lambda (y) (perlin-pt x y keypt power)) xs)) ys)))

Figure 1: Code for the structured Perlin noise generator.2d-interp is B-spline interpolation.

3.1 Hamiltonian MCMC
Alg. 2: Hamiltonian MCMC

1: repeat forever
2: Gibbs step:
3: Draw momentumm ∼ N (0, σ2)
4: Metropolis step:
5: Start with current state(x,m)
6: Simulate Hamiltonian dynamics to give(x′,m′)

7: Accept w/p = min[1, e(−H(x′,m′)+H(x,m))]
8: end;

To illustrate the power of AD in proba-
bilistic programming, we build on Hamil-
tonian MCMC (HMC), an efficient algo-
rithm whose popularity has been some-
what limited by the necessity of comput-
ing gradients—a difficult task for com-
plex models. Neal [15] introduces HMC
as an inference method which “produces
distant proposals for the Metropolis algo-
rithm, thereby avoiding the slow explo-
ration of the state space that results from the diffusive behavior of simple random-walk proposals.”
HMC begins by augmenting the states space with “momentum variables”m. The distribution over
this augmented space iseH(x,m), where the Hamiltonian functionH decomposed into the sum of
a potential energy termU(x) = − ln p(x) and a kinetic energyK(m) which is usually taken to
be Gaussian. Inference proceeds by alternating between a Gibbs step and Metropolis step: fixing
the current statex, a new momentumm is sampled from the prior overm; thenx andm are up-
dated together by following a trajectory according to Hamiltonian dynamics. Discrete integration
of Hamiltonian dynamics requires the gradient ofH, and must be done with a symplectic (i.e. vol-
ume preserving) integrator (following [15] we use the Leapfrog method). While this is a complex
computation, incorporating gradient information dramatically improves performance over vanilla
random-walk style MH moves (such as Gaussian drift kernels), and its statistical efficiency also
scales much better with dimensionality than simpler methods [15]. AD can also compute higher-
order derivatives. For example, Hessian matrices can be used to construct blocked Metropolis moves
[9] or proposals based on Newton’s method [19], or as part of Riemannian manifold methods [5].

3.2 Experiments and Results
We implemented HMC by extending BHER [28], a lightweight implementation of the CHURCH
language which provides simple, but universal, MH inference. We used used an implementation of
AD based on [17] that uses hygienic operator overloading to do both forward and reverse mode AD
for Scheme (the target language of the BHER compiler).

The goal is to compute∇xp(x). By Eq. 1,p(x) is the product of the individual choices made by
eachxi (though each probability can depend on previous choices, through the program evaluation).
To computep(x), BHER executes the corresponding program, accumulating likelihoods. Each time
a continuous ERP is created or retrieved, we wrap it in a “tape” object which is used to track gradient
information; as the likelihoodp(x) is computed, these tapes flow through the program and through
appropriately overloaded operators, resulting in a dependency graph for the real portion of the com-
putation. The gradient is then computed in reverse mode, by “back-propagating” along this graph.
We implement an HMC kernel by using this gradient in the leapfrog integrator. Since program states
may contain a combination of discrete and continuous ERPs, we use an overall cycle kernel which
alternates between standard MH kernel for individual discrete random variables and the HMC ker-
nel for all continuous random choices. To decrease burn-in time, we initialize the sampler by using
annealed gradient ascent (again implemented using AD).

We ran two sets of experiments that illustrate two differentbenefits of HMC with AD: automated
gradients of complex code, and good statistical efficiency.

Structured Perlin noise generation. Our first experiment uses HMC to generate modified Perlin
noise with soft symmetry structure. Perlin noise is a procedural texture used by computer graphics
artists to add realism to natural textures such as clouds, grass or tree bark. We generate Perlin-
like noise by layering octaves of random but smoothly varying functions. We condition the result
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Figure 2: On the left: samples from the structured Perlin noise generator. On the right: convergence
of expected mean for a draw from a 3D spherical Gaussian conditioned on lying on a line.

on approximate diagonal symmetry, forcing the resulting image to incorporate additional structure
without otherwise skewing the statistics of the image. Notethat the MAP solution for this problem is
uninteresting, as it is a uniform image; it is the variationsaround the MAP that provide rich texture.
We generated 48x48 images; the model had roughly 1000 variables.

Fig. 2 shows the result via typical samples generated by HMC,where the approximate symmetry is
clearly visible. A code snippet demonstrating the complexity of the calculations is shown in Fig. 1;
this experiment illustrates how the automatic nature of thegradients is most helpful, as it would be
time consuming to compute these gradients by hand—particularly since we are free to condition
using any function of the image.

Normal distribution noisily condi-
tioned on line (2D projection)

1: x ∼ N (µ, σ)

2: k ∼ Bernoulli(e−
dist(line,x)

noise )
3: Condition onk = 1

-1.5 -1.0 -0.5 0.5 1.0 1.5

-2

-1

1

2

Complex conditioning. For our second example, we
demonstrate the improved statistical efficiency of the
samples generated by HMC versus BHER’s standard
MCMC algorithm. The goal is to sample points from a
complex 3D distribution, defined by starting with a Gaus-
sian prior, and sampling points that are noisily condi-
tioned to be on a line running throughR3. This creates
complex interactions with the prior to yield a smooth, but
strongly coupled, energy landscape.

Fig. 2 compares our HMC implementation with BHER’s
standard MCMC engine. The x-axis denotes samples,
while the y-axis denotes the convergence of an estimator
of certain marginal statistics of the samples. We see that
this estimator converges much faster for HMC, implying
that the samples which are generated are less autocorrelated – affirming that HMC is indeed making
better distal moves. HMC is about 5x slower than MCMC for thisexperiment, but the overhead is
justified by the significant improvement in the statistical quality of the samples.

4 Provenance Tracking for Fine-Grained Dynamic DependencyAnalysis

One reason gradient based inference algorithms are effective is that the chain rule of derivatives
propagates information backwards from the data up to the proposal variables. But gradients, and the
chain rule, are only defined for continuous variables. Is there a corresponding structure for discrete
choices? We now introduce a new nonstandard interpretationbased on provenance tracking (PT). In
programming language theory, the provenance of a variable is the history of variables and computa-
tions that combined to form its value. We use this idea to track fine-grained dependency information
between random values and intermediate computations as they combine to form a likelihood. We
then use this provenance information to construct good global proposals for discrete variables as
part of a novel factored multiple-try MCMC algorithm.

4.1 Defining and Implementing Provenance Tracking
Like AD, PT can be implemented with operator overloading. Because provenance information is
much coarser than gradient information, the operators in PTobjects have a particularly simple form;
most program expressions can be covered by considering a fewcases. LetX denote the set{xi}
of all (not necessarily random) variables in a program. LetR(x) ⊂ X define the provenance of a
variablex. GivenR(x), the provenance of expressions involvingx can be computed by breaking
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down expressions into a sequence of unary operations, binary operations, and function applications.
Constants have empty provenances.

Let x andy be expressions in the program (consisting of an arbitrary mix of variables, constants,
functions and operators). For a binary operationx ⊙ y, the provenanceR(x ⊙ y) of the result is
defined to beR(x⊙ y) = R(x) ∪R(y). Similarly, for a unary operation, the provenanceR(⊙x) =
R(x). For assignments,x = y ⇒ R(x) = R(y). For a function,R(f(x, y, ...)) may be computed
by examining the expressions withinf ; a worst-case approximation isR(f(x, y, ...)) = R(x) ∪
R(y) · · · . A few special cases are also worth noting. Strictly speaking, the previous rules track a
superset of provenance information because some functionsand operations are constant for certain
inputs. In the case of multiplication,x ∗ 0 = 0, soR(x ∗ 0) = {}. Accounting for this gives tighter
provenances, implying, for example, that special considerations apply to sparse linear algebra.

In the case of probabilistic programming, recall that random variables (or ERPs) are represented as
stochastic functionsfi that accept parametersθi. Whenever a random variable is conditioned, the
output of the correspondingfi is fixed; thus, while thelikelihoodof a particular output offi depends
onθi, thespecific outputof fi does not. For the purposes inference, therefore,R(fi(θi)) = {}.

4.2 Using Provenance Tracking as Part of Inference
Provenance information could be used in many ways. Here, we illustrate one use: to help construct
good block proposals for MH inference. Our basic idea is to construct a good global proposal by
starting with a random global proposal (which is unlikely tobe good) and then inhibiting the bad
parts. We do this by allowing each element of the likelihood to “vote” on which proposals seemed
good. This can be considered a factored version of a multiple-try MCMC algorithm [16].

The algorithm is shown in Fig. 3. LetxO be the starting state. In step (2), we propose a new state
xO′

. This new state changes many ERPs at once, and is unlikely to be good (for the proof, we require
thatxO′

i 6= xO
i for all i). In step (3), we accept or reject each element of the proposal based on a

functionα. Our choice ofα (Fig. 3, left) uses PT, as we explain below. In step (4) we construct a
new proposalxM by “mixing” two states: we set the variables in the accepted setA to the values of
xO′

i , and we leave the variables in the rejected setR at their original values inxO. In steps (5-6) we
compute the forward probabilities. In steps (7-8) we sampleone possible path backwards fromxM

to xO, with the relevant probabilities. Finally, in step (9) we accept or reject the overall proposal.

We useα(xO, xO′

) to allow the likelihood to “vote” in a fine-grained way for which proposals
seemed good and which seemed bad. To do this, we computep(xO) using PT to track how each
xO
i influences the overall likelihoodp(xO). LetD(i;xO) denote the “descendants” of variablexO

i ,
defined as all ERPs whose likelihoodxO

i impacted. We also use PT to computep(xO′

), again
tracking dependentsD(i;xO′

), and letD(i) be the joint set of ERPs thatxi influences in either state
xO or xO′

. We then useD(i), p(xO) andp(xO′

) to estimate the amount by which each constituent
elementxO′

i in the proposal changed the likelihood. We assign “credit” to eachi as if it were the
only proposal– that is, we assume that if, for example, the likelihood wentup, it was entirely due to
the change inxO

i . Of course, the variables’ effects are not truly independent; this is a fully-factored
approximation to those effects. The finalα is shown in Fig. 3 (left), where we definep(xD(i)) to be
the likelihood ofonly the subset of variables thatxi impacted.

Here, we prove that our algorithm is valid MCMC by following [16] and showing detailed balance.
To do this, we must integrate over all possible rejected paths of the negative bitsxO′

R andxMI
R :

p(xO)P (xM |xO) = p(xO)

∫

xO′

R

∫

xMI
R

QO′

A QO′

R PM
A PM

R QMI
R min

{

1,
p(xM )

p(xO)

QMI
A PMI

A PMI
R

QO′

A PM
A PM

R

}

=

∫

xO′

R

∫

xMI
R

QO′

R QMI
R min

{

p(xO)QO′

A PM
A PM

R , p(xM )QMI
A PMI

A PMI
R

}

= p(xM )

∫

xO′

R

∫

xMI
R

QMI
A QMI

R PMI
A PMI

R QO′

R min

{

1,
p(xO)QO′

A PM
A PM

R

p(xM )QMI
A PMI

A PMI
R

}

= p(xM )P (xO|xM )

where the subtlety to the equivalence is that the rejected bitsxO′

R andxMI
R have switched roles.�
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Alg. 3: Factored Multiple-Try MH

1: Begin in statexO. Assume it is composed of individual ERPsxO =
{

xO
1 , · · · , x

O
k

}

.

2: Propose a new state for many ERPs. Fori = 1, · · · , k, proposexO′

i ∼ Q(xO′

|xO) s.t.xO′

i 6= xO
i .

3: Decide to accept or reject each element ofxO′

. This test can depend arbitrarily onxO andxO′

, but must
decide for each ERP independently; letαi(x

O, xO′

) be the probability of acceptingxO′

i . LetA be the set
of indices of accepted proposals, andR the set of rejected ones.

4: Construct a new state,xM =
{

xO′

i : i ∈ A
}

⋃
{

xO
j : j ∈ R

}

. This new state mixes new values for the

ERPs from the accepted setA and old values for the ERPs in the rejected setR.
5: LetPM

A =
∏

i∈A
αi(x

O, xO′

) be the probability of accepting the ERPs inA, and letPM
R =

∏

j∈R
(1 −

αj(x
O, xO′

)) be the probability of rejecting the ERPs inR.
6: LetQO′

A =
∏

i∈A
Q(xO′

i |xO) andQO′

R =
∏

j∈R
Q(xO′

j |xO).

7: Construct a new statexMI . Propose new values for all of the rejected ERPs usingxM as the start state,
but leave ERPs in the accepted set at their original value. Forj ∈ R let xMI

j ∼ Q(·|xM ). Then,
xMI =

{

xO
i : i ∈ A

}
⋃

{

xMI
j : j ∈ R

}

.
8: LetPMI

A =
∏

i∈A αi(x
M , xMI), and letPMI

R =
∏

j∈R(1− αj(x
M , xMI)).

9: AcceptxM with probabilitymin
{

1, (p(xM )QMI
A PMI

A PMI
R )/(p(xO)QO′

A PM
A PM

R )
}

.

Alg. 4: A PT-based Acceptance Test

1: The PT algorithm implementsαi(x, x
′).

2: Computep(x), trackingD(xi;x)
3: Computep(x′), trackingD(xi;x

′)
4: LetD(i) = D(xi;x) ∪D(xi;x

′)

5: Let αi(x, x
′) = min

{

1,
p(x′

i)p(x
′

D(i))

p(xi)p(xD(i))

}

Individual ERPs
Accepted set

Rejected set

Start

state

Proposed

state

Mixed

state Reverse path

Figure 3: The factored multiple-try MH algorithm (top), thePT-based acceptance test (left) and an
illustration of the process of mixing together different elementary proposals (right).

4.3 Experiments and Results

We implemented provenance tracking and in Stochastic MATLAB [28] by leveraging MATLAB ’s
object oriented capabilities, which provides full operator overloading. We tested on four tasks: a
Bayesian “mesh induction” task, a small QMR problem, probabilistic matrix factorization [23] and
an integer-valued variant of PMF. We measured performance by examining likelihood as a function
of wallclock time; an important property of the provenance tracking algorithm is that it can help
mitigate constant factors affecting inference performance.

Alg. 5: Bayesian Mesh Induction

1: function X = bmi( basemesh )
2: mesh = basemesh + randn;
3: img = render( mesh );
4: X = img + randn;
5: end;

Bayesian mesh induction. The BMI task is simple:
given a prior distribution over meshes and a target im-
age, sample a mesh which, when rendered, looks like the
target image. The prior is a Gaussian centered around a
“mean mesh,” which is a perfect sphere; Gaussian noise
is added to each vertex to deform the mesh. The model
is shown in Alg. 5. The rendering function is a custom
OPENGL renderer implemented as a MEX function. No
gradients are available for this renderer, but it is reasonably easy to augment it with provenance
information recording vertices of the triangle that were responsible for each pixel. This allows us to
make proposals to mesh vertices, while assigning credit based on pixel likelihoods.

Results for this task are shown in Fig. 4 (“Face”). Even though the renderer is quite fast, MCMC
with simple proposals fails: after proposing a change to a single variable, it must re-render the image
in order to compute the likelihood. In contrast, making large, global proposals is very effective.
Fig. 4 (top) shows a sequence of images representing burn-inof the model as it starts from the initial
condition and samples its way towards regions of high likelihood.A video demonstrating the results
is available athttp://www.mit.edu/ ˜ wingated/papers/index.html .
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Figure 4: Top: Frames from the face task. Bottom: results on Face, QMR, PMF and Integer PMF.

QMR. The QMR model is a bipartite, binary model relating diseases(hidden) to symptoms (ob-
served) using a log-linear noisy-or model. Base rates on diseases can be quite low, so “explaining
away” can cause poor mixing. Here, MCMC with provenance tracking is effective: it finds high-
likelihood solutions quickly, again outperforming naive MCMC.

Probabilistic Matrix Factorization. For the PMF task, we factored a matrixA ∈ R
1000x1000 with

99% sparsity. PMF places a Gaussian prior over two matrices,U ∈ R
1000x10 andV ∈ R

1000x10,
for a total of 20,000 parameters. The model assumes thatAij ∼ N (UiV

T
j , 1). In Fig. 4, we see

that MCMC with provenance tracking is able to find regions of much higher likelihood much more
quickly than naive MCMC. We also compared to an efficient hand-coded MCMC sampler which
is capable of making, scoring and accepting/rejecting about 20,000 proposals per second. Interest-
ingly, MCMC with provenance tracking is more efficient than the hand-coded sampler, presumably
because of the economies of scale that come with making global proposals.

Integer Probabilistic Matrix Factorization. The Integer PMF task is like ordinary PMF, except
that every entry inU andV is constrained to be an integer between 1 and 10. These constraints
imply that no gradients exist. Empirically, this does not seem to matter for the efficiency of the
algorithm relative to standard MCMC: in Fig. 4 we again see dramatic performance improvements
over the baseline Stochastic MATLAB sampler and the hand-coded sampler.

5 Conclusions
We have shown how nonstandard interpretations of probabilistic programs can be used to extract
structural information about a distribution, and how this information can be used as part of a vari-
ety of inference algorithms. The information can take the form of gradients, Hessians, fine-grained
dependencies, or bounds. Empirically, we have implementedtwo such interpretations and demon-
strated how this information can be used to find regions of high likelihood quickly, and how it can
be used to generate samples with improved statistical properties versus random-walk style MCMC.
There are other types of interpretations which could provide additional information. For example,
interval arithmetic [22] could be used to provide bounds or as part of adaptive importance sampling.

Each of these interpretations can be used alone or in concertwith each other; one of the advantages
of the probabilistic programming framework is the clean separation of models and inference algo-
rithms, making it easy to explore combinations of inferencealgorithms for complex models. More
generally, this work begins to illuminate the close connections between probabilistic inference and
programming language theory. It is likely that other techniques from compiler design and program
analysis could be fruitfully applied to inference problemsin probabilistic programs.
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