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Abstract

We present an algorithm for learning high-treewidth Markaiworks where in-
ference is still tractable. This is made possible by exjigitontext-specific inde-
pendence and determinism in the domain. The class of modelsigorithm can
learn has the same desirable properties as thin juncties:tpmlynomial inference,
closed-form weight learning, etc., but is much broader. &gorithm searches for
a feature that divides the state space into subspaces wigerenhaining variables
decompose into independent subsets (conditioned on thadeand its negation)
and recurses on each subspace/subset of variables untiefd new features can
be found. We provide probabilistic performance guaranteesur algorithm un-
der the assumption that the maximum feature length is balibgiea constank
(the treewidth can be much larger) and dependences are nflbdistrength. We
also propose a greedy version of the algorithm that, whilgdimg these guaran-
tees, is much more efficient. Experiments on a variety of dosnshow that our
approach outperforms many state-of-the-art Markov nétwtructure learners.

1 Introduction

Markov networks (also known as Markov random fields, etce ar attractive class of joint prob-
ability models because of their generality and flexibiliyowever, this generality comes at a cost.
Inference in Markov networks is intractable [25], and apimate inference schemes can be un-
reliable, and often require much hand-crafting. Weightr@ay has no closed-form solution, and
requires convex optimization. Computing the gradient fetiraization in turn requires inference.
Structure learning — the problem of finding the features effNfarkov network — is also intractable
[15], and has weight learning and inference as subroutines.

Intractable inference and weight optimization can be asiflwe restrict ourselves tecomposable
Markov networks [22]. A decomposable model can be expreasedproduct of distributions over
the cliques in the graph divided by the product of the distidns of their intersections. An arbitrary
Markov network can be converted into a decomposable onédmgulation (adding edges until every
cycle of length four or more has at least one chord). The tiagustructure is called mnction tree
Goldman [13] proposed a method for learning Markov netwaritsout numeric optimization based
onthisidea. Unfortunately, the triangulated network caexponentially larger than the original one,
limiting the applicability of this method. More recentlyseries of papers have proposed methods
for directly learning junction trees of bounded treewidi®, 1, 8] etc.). Unfortunately, since the
complexity of inference (and typically of learning) is exgmtial in the treewidth, only models of
very low treewidth (typically 2 or 3) are feasible in pra€tj@nd thin junction trees have not found
wide applicability.

Fortunately, low treewidth is an overly strong conditionodiéls can have high treewidth and still
allow tractable inference and closed-form weight learrimogn a reasonable number of samples, by
exploiting context-specific independence [6] and deteisni{7]. Both of these result in clique dis-



tributions that can be compactly expressed even if the eficare large. In this paper we propose a
learning algorithm based on this observation. Inferengeri¢hms that exploit context-specific inde-
pendence and determinism [7, 26, 11] have a common struchey search for partial assignments
to variables that decompose the remaining variables imtepgandent subsets, and recurse on these
smaller problems until trivial ones are obtained. Our atgar uses a similar strategy, but at learning
time: it recursively attempts to find features (i.e., paneriable assignments) that decompose the
problem into smaller (nearly) independent subproblemd, stops when the data does not warrant
further decomposition.

Decomposable models can be expressed as both Markov netammalBayesian networks, and state-
of-the-art Bayesian network learners extensively exploittext-specific independence [9]. How-
ever, they typically still learn intractable models. LowadaDomingos [18] learned tractable high-
treewidth Bayesian networks by penalizing inference cexipt along with model complexity in

a standard Bayesian network learner. Our approach can és@onentially more compact models
by exploiting the additional flexibility of Markov networksvhere features can overlap in arbitrary
ways. It can greatly speed up learning relative to standaak/ network learners because it avoids
weight optimization and inference, while Lowd and Domingadgorithm is much slower than stan-
dard Bayesian network learning (where, given complete, degght optimization and inference are
already unnecessary). Perhaps most significantly, it smlsre fundamental in that it is based on
identifying what makes inference tractable and directlgleiting it, potentially leading to a much
better accuracy/inference cost trade-off. As a result,approach has formal guarantees, which
Lowd and Domingos’ algorithm lacks.

We provide both theoretical guarantees and empirical egieléor our approach. First, we provide
probabilistic performance guarantees for our algorithmnigking certain assumptions about the
underlying distribution. These results rely on exhaussigarch over features up to lendth (The
treewidth of the resulting model can still be as large as thalver of variables.) We then propose
greedy heuristics for more efficient learning, and show eicgdly that the Markov networks learned
in this way are more accurate than thin junction trees asagatietworks learned using the algorithm
of Della Pietra et al. [12] and L1 regularization [16, 24],iletallowing much faster inference (which
in practice translates into more accurate query answers).

2 Background: Junction Trees and Feature Graphs

We denote sets by capital letters and members of a set by lettails. A double capital letter denotes
a set of subsets. We assume that all random variables haaeylsiomains{0,1} (or {false,trug).
We make this assumption for simplicity of exposition; oualysis extends trivially to multi-valued
variables.

We begin with some necessary definitions. An atomic featuliéeoal is an assignment of a value to
a variable z denotes the assignment= 1 while -z denotes: = 0 (note that the distinction between
an atomic feature: and the variable which is also denoted bys usually clear from context). A
feature, denoted by, defined over a subset of variabl&€g F") is formed by conjoining atomic
features or literals, e.gr; A —x4 is a feature formed by conjoining two atomic featurgsand—zx-.
Given an assignment, denoted By F'), to all variables o, F' is said to be satisfied or assigned the

valuel iff for all literals [ € F, it also holds that € V(F). A feature that is not satisfied is said to

be assigned the value Often, given a featur&’, we will abuse notation and wrifg (F') asF.

A Markov network or a log-linear model is defined as a set of@t;, w;) whereF; is a feature
andw; is its weight. It represents the following joint probabjldistribution:

P(V) = %exp <Z w; X Fi(VV(Fl))> @

whereV is a truth-assignment to all variablés = U;V (F;), F;(Vy(q,)) = 1 if Vy (g, satisfies
F;, and0 otherwise, and is the normalization constant, often called ragtition function

Next, we define junction trees. L& = {C,...,C,,} be a collection of subsets &f such that:
(a)uir,C; = V and (b) for each featurg};, there exists &'; € C such that all variables of}; are
contained inC;. EachC; is referred to as a clique.
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(a) A feature tree

(b) A Markov network

Figure 1:Figure showing (a) a feature tree, (b) the Markov network corredipgrto the leaf features of (a)

and (c) the (optimal) junction tree for the Markov network in (b). A leaftdiea is formed by conjoining the
feature assignments along the path from the leaf to the root. For exan®pfeatare corresponding to the right
most leaf node is{z1 A z2) A (z4 A z6). For the feature tree, ovals denote F-nodes and rectangles denote
A-nodes. For the junction tree, ovals denote cliques and rectangletedsparators. Notice that each F-node

in the feature tree has a feature of size bounde® Wwhile the maximum clique in the junction tree is of size
Moreover notice that the A-node corresponding#e A z2) = 0 induces a different variable decomposition as
compared with the A-node correspondingiq A z2) = 1.

DerINITION 1. AtreeT = (C, E) is ajunction tree iff it satisfies the running intersection property,
i.e.,VC;,C;,C, € C,i # j # k, such thaiCy, lies on the unique simple path betwe€nandC;,
xz € C;NC; = x € (. The treewidth of", denoted byw, is the size of the largest clique@minus
one. The sef;; = C; N Cj is referred to as the separator corresponding to the @dgej) € E.

The space complexity of representing a junction tre@ (" 21Gil) = O(n x 2w+t1).

Our goal is to exploit context-specific and deterministipeledencies that is not explicitly repre-
sented in junction trees. Representations that do thisdiechrithmetic circuits [10] and AND/OR
graphs [11]. We will use a more convenient form for our pugspsvhich we calfeature graphsin-
ference in feature graphs is linear in the size of the graphréaders familiar with AND/OR graphs
[11], a feature tree (or graph) is simply an AND/OR tree (@mdr) with OR nodes corresponding to
features and AND nodes corresponding to feature assigisment

DEFINITION 2. A feature tree denoted bySt is a rooted-tree that consists of alternating levels of
feature nodes or F-nodes and feature assignment nodes odésn Each F-nodé is labeled by

a featureF’ and has two child A-nodes labeled Byand1, corresponding to the true and the false
assignments of" respectively. Each A-nodd hask > 0 child F-nodes that satisfy the following
requirement. Le{F .4 1,...,F.4} be the set of child F-nodes of and letD(F 4 ;) be the union

of all variables involved in the features associated whth; and all its descendants, theh, j
{]—v'”vk}vi #ij(‘FA,z) mD('FA,j) = 0.

Semantically, each F-node represents conditioning wiidd &-node represents partitioning of the
variables into conditionally-independent subsets. TlEsgomplexity of representing a feature tree
is the number of its A-nodes. A feature graph denotedrgyis formed by merging identical sub-
trees of a feature tre®r. Itis easy to show that a feature graph generalizes a juntte and in fact
any model that can be represented using a junction tree gné&nd@awidthk can also be represented
by a feature graph that uses ord}(n x 2*) space [11]. In some cases, a feature graph can be
exponentially smaller than a junction tree because it catuca context-specific independence [6].

A feature tree can be easily converted to a Markov networle ddresponding Markov network has
one feature for each leaf node, formed by conjoining allfeaassignments from the root to the leaf.
The following example demonstrates the relationship betwgefeature tree, a Markov network and
a junction tree.

ExamMPLE 1. Figure 1(a) shows a feature tree. Figure 1(b) shows the Mar&twork corresponding
to the leaf features of the feature tree given in Figure 1@pure 1(c) shows the junction tree
for the Markov network given in 1(b). Notice that because fisgture tree uses context-specific
independence, all thé'-nodes in the feature tree have a feature of size boundetialyile the
maximum clique size of the junction treefisThe junction tree given in Figure 1(b) requif¥s< 2 =

64 potential values while the feature tree given in Figure téglires onlyl0 A-nodes.

In this paper, we will present structure learning algorisitmlearn feature trees only. We can do this
without loss of generality, because a feature graph can bstruwted by caching information and
merging identical nodes, while learning (constructinggattire tree.



The distribution represented by a feature tfgecan be defined procedurally as follows (for more
details see [11]). We assume that each leaf A-ndges associated with a weighit(.A4;). For each
A-node A and each F-nodé&, we associate a value denoteddyd) andv(F) respectively. We
compute these values recursively as follows from the leawéke root. The value of all A-nodes
is initialized to1 while the value of all F-nodes is initialized to The value of the leaf A-nodd,
isw(A;) x #(M(A;)) where#(M(A;)) is number of (full) variable assignments that satisfy the
constraintM (A;) formed by conjoining the feature-assignments from the toot;. The value of
an internal F-node is the sum of the values of the child A-sodéhe value of an internal A-node
A, that hask children is the product of the values of its child F-nodesdtid by[ (M (A,))]* !
(the division takes care of double counting). L€¢f,.) be the value of the root node; computed as
described above. Léf be an assignment to all variabl&sof the feature tree, then:
_— UV(]:T>
PV) v(Fr)

wherewy-(F,) is the value of the root node &fr computed as above in which each leaf A-node is

initialized instead tav(.A4;) if V satisfies the constraint formed by conjoining the featssiganments
from the root ta4; and0 otherwise.

3 Learning Efficient Structure

Algorithm 1: LMIP: Low Mutual Information Partitioning

Input : A variable sefi”, sample dataD, mutual information subrouting, a feature assignmeit, threshold,
max set size.
Output: A set of subsets o
QF =1{Q1,..., Qv }, whereQ; = {z;} // Qf is a set of singletons
if the subset oD that satisfied” is too smalithen
| return Qf
else
for ACV,|A|l < qgdo
if minxcal(X, A\X|F) > ¢ then
L /1 find mn using Queyranne’s algorithm[23] applied to the

subset of D satisfying F
merge allQ; € QFs.t.Q; N A £ 0.

return Q#

We propose a feature-based structure learning algoritlamserarches for a feature that divides the
configuration space into subspaces. We will assume thaetbetsd feature or its negation divides
the (remaining) variables into conditionally independesutitions (we don’t require this assumption
to be always satisfied, as we explain in the section on greedsidiics and implementation details).
In practice, the notion of conditional independence is tworg). Therefore, as in previous work
[21, 8], we instead use conditional mutual information,ated byI, to partition the set of variables.
For this we use the LMIP subroutine (see Algorithm 1), a varia Chechetka and Guestrin’s [8]
LTCI algorithm that outputs a partitioning ®f. The runtime guarantees of LMIP follow from those
of LTCI and correctness guarantees follow in an analogosisida. In general, estimating mutual
information between sets of random variables has time angblsacomplexity exponential in the
number of variables considered. However, we can be moréeeffias we show below. We start with
a required definition.

DEFINITION 3. Given a feature assignment, a distributionP (V) is (3, ¢, F')-coverable if there
exists a set of clique§ such that for every’; € C, |C;| < j andI(C;, V \ Ci|F) < e. Similarly,
given a featurd”, a distributionP (V) is (j, ¢, F)-coverable if it is bothj, ¢, F = 0)-coverable and
(j, €, F = 1)-coverable.

LEMMA 1. Let A C V. Suppose there exists a distribution &nthat is (j, ¢, F')-coverable and
VX C V where|X| < j, it holds that/(X N A, X N (V\A)[F) < é. Then,I(A,V\A|F) <
[V|(2¢ + 9).

Lemma 1 immediately leads to the following lemma:



LEMMA 2. Let P(V) be a distribution that ifj, ¢, F')-coverable. Then LMIP,

f
partitioning of V' into disjoint subset$Q1, . .., Q., } such thatvi, I(Q;, V\Q;|F)
1)d).

of > j, returns a
<|V|(2e+ (j —

\%

We summarize the time and space complexity of LMIP in theofeihg lemma.

LEMMA 3. The time and space complexity of LMIPGE(})) x n x J3'') where ;' is the time
complexity of estimating the mutual information betweea tisjoint sets which have combined
cardinality q.

Note that our actual algorithm will use a subroutine thainestes mutual information from data,
and the time complexity of this routine will be described le tsection on sample complexity and
probabilistic performance guarantees.

Algorithm 2: LEM: Learning Efficient Markov Networks

Input: Variable sefl”, sample dat#®, mutual information subrouting, feature lengttk, set size parametet
thresholdy, an A-nodeA.
Output: A feature treeM
for each featurer” of lengthk constructible forl” do
QpF=1 =LMIP(V, S,I,F =1,4,q);
| Qr—0o=LMIP(V,S,I,F =0,6,q)
G =argmaxr (ScoreQr—o)+ ScoreQr=1))// G is a feature
if |Qe=0| = 1and|Q¢=1| = 1then
Create a feature tree corresponding to all possible assignments to the ftatures. Add this feature tree
as a child ofA4;
L return
Create a F-nodg with G as its feature, and add it as a child.éf
Create two A-child nodesglg,o and.Ag,1 for G;
for i € {0,1} do
if |Qg=:| > 1then
for each component (subset¥dj C' € Q¢=; do
Sc =Project ({X € S : X satisfiesz =i})// Sc is the set of
instantiations of V in S that satisfy G=i restricted to the
variables in C
LEM(C, Sc, I,k,q,9,Ag:) /! Recursion

Ise
Create a feature tree corresponding to all possible assignments to the features. Add this feature

| tree as a child ofdg ;.

0]

Next, we present our structure learning algorithm called/LSee Algorithm 2) which utilizes the
LMIP subroutine to learn feature trees from data. The alborihas probabilistic performance guar-
antees if we make some assumptions on the type of the distribiWe present these guarantees in
the next subsection. Algorithm 2 operates as follows. Firsuns the LMIP subroutine on all pos-
sible features of length constructible froml/. Recall that given a feature assignméhtthe LMIP
sub-routine partitions the variables into (approximgtelynditionally independent components. It
then selects a featute having the highest score. Intuitively, to reduce the infesetime and the size
of the model, we should try to balance the trade-off betwaereasing the number of partitions and
maintaining partition size uniformity (namely, we wouldntdhe partition sizes to be almost equal).
The following score function achieves this objective. Qe {Q1, . .., Q. } be a m-partition oV,
then thescoreof Q is given by: Score(Q) where the denominator bounds worst-case

inference complexity.

_ 1
R>2EAnk

After selecting a featur€, the algorithm creates a F-node corresponding &nd two child A-nodes
corresponding to the true and the false assignmen€s. ofhen, corresponding to each element of
Qg=1, it recursively creates a child node f6f = 1 (and similarly forG = 0 usingQg—o). An
interesting special case is when eith®;—1| = 1 or |Qg=o| = 1 or when both conditions hold.
In this case, no partitioning df exists for either or both the value assignments-aind therefore
we return a feature tree which ha’! leaf A-nodes corresponding to all possible instantiations of
the remaining variables. In practice, because of the exgi@ielependence ofV'|, we would want



this condition to hold only when a few variables remain. Tdai guarantees, however, we need
stronger conditions to be satisfied. We describe these giggasmnext.

3.1 Theoretical Guarantees

To derive performance guarantees and to guarantee polghocormplexity, we make some funda-
mental assumptions about the data and the distributidn) that we are trying to learn. Intuitively,
if there exists a featur€' such that the distributio® (V") at each recursive call to LEM igj, €, F)-
coverable, then the LMIP sub-routine is guaranteed to mestileast a two-way partitioning df.
Assume that?(V) is such that at each recursive call to LEM, there exists ausit(such that the
distribution at the recursive call {g, ¢, F')-coverable). Then, LEM is guaranteed to find this unique
feature tree. However, the trouble is that at each step ofettersion, there may exist > 1 can-
didate featureghat satisfy this property. Therefore, we want this coviitglrequirement to hold
not only recursively but also for each candidate featuregat recursive call). The following two
definitions and Theorem 1 capture this intuition.

DEFINITION 4. Given a constand > 0, we say that a distributio® (V") satisfies the€j, e, m, G)
assumption ifV| < j or if the following property is satisfied. For every featureand each assign-
mentF of F, such thatV (F)| < m, P(V) is (j,¢, F)-coverable and for any partitioningy, ..., S,
of V with z > 2, such that for each I(S;,V \ S;|FFAG) < |V|(2¢+ ) andP(S,), ..., P(S,) each
satisfy the(j, e, m, G A F') assumption.

DEFINITION 5. We say the a sequence of pais,,, S,,), (Fr—1,Sn-1),---,(Fo, S0 = V) sat-
isfies thenested context independence condition fofd, w) if Vi, S; C S;_; and the distribu-
tion on V' conditioned on the satisfaction ¢f,_y = (F;—_1 A F;_a A ... A Fy) is such that
I(Ss, Si—1\Si|Gi—1) < [S:i-1](20 +w).

THEOREM 1. Given a distributionP (V') that satisfies théj, ¢, m, true)-assumption and a perfect
mutual information oracld, LEM(V, S, I, k, j + 1, §) returns a feature tre&r such that each leaf
feature ofSt satisfies the nested context independence conditiafa fgrx 4).

3.1.1 Sample Complexity and Probabilistic Performance Guantees

The foregoing analysis relies on a perfect, deterministitual information subrouting. In real-
ity, all we have is sample data and probabilistic mutual rimfation subroutines. As the following
theorem shows, we can get estimates (f, B|F') with accuracyt+A and probabilityl — ~ with a
number of samples and running time polynomiakirand log .

LEMMA 4. (Hoffgen [14]) The entropy of a probability distribution ewv2k + 2 discrete vari-

ables with domain siz& can be estimated with accuracy with probability at leastl — ~ using
F(k,R,A,v) = O(RZ;+4 logQ(RZ;z )log(Rz:+2 )) samples and the same amount of time.

To ensure that our algorithm doesn’t run out of data somesvirerthe recursion, we have to
strengthen our assumptions, as we define below.

DEFINITION 6. If P(V) satisfies thej, ¢, m, true)-assumption and a set of sample d&talrawn
from the distribution is such that for arfy;_; = F;_, A ... Fg if neither F; = 0 or F; = 1 hold in
less than some constant fractionf the subset off that satisfie€7;_;, then we say thall satisfies
the c-strengthened(j, €, m, true) assumption

THEOREM 2 (Probabilistic performance guarantee3. Let P(V) be a distribution that sat-
isfies the (j,e,m,true) assumption and letd be the training data which satisfies the
c-strengthened(j, ¢, m, true) assumption from which we dravws samples of sizeT' =
(LHPF(IF, V], A, WW) whereD is the worst-case length of any leaf feature returned

by the algorithm. Given a mutual information subroutihenplied by Lemma 4, LEN, S, I, m,
j+ 1, e+ A) returns a feature tree, the leaves of which satisfy theeuesbntext independence
condition for(e, j x (e + A)), with probability1 — ~.

4 Greedy Heuristics and Implementation Details

When implemented naively, Algorithm 2 may be computatignaifeasible. The most expensive
step in LEM is the LMIP sub-routine which is call€d(n*) times at each A-node of the feature



graph. Given a max set size @f LMIP requires running Queyranne’s algorithm [23] (conxitie
O(¢?)) to minimizeminx-aI1(X,V \ X|F) over every|A| < q. Thus, its overall time complexity
is O(n? x ¢3). Also, our theoretical analysis assumes access to a mafoatiation oracle which is
not available in practice and one has to compt&, V \ X |F) from data. In our implementation,
we used Moore and Lee’s AD-trees [19] to pre-compute andecttud sufficient statistics (counts),
in advance, so that at each stépX, V' \ X|F) can be computed efficiently. A second improvement
that we considered is due to Chechtka and Guestrin [8]. las®t on the observation thatAfis a
subset of a connected componénhe Q, then we don't need to compuiteinx - 4I(X,V \ X |F),
because merging al); € Qg s.t. Q;NA # (). would not chang&. In spite of these improvements,
our algorithm is not practical fay > 3 andk > 3. Note however, that low values gfandk are not
entirely problematic for our approach because we may #tilile to induce large treewidth models
by taking advantage of context specific independence, dstddpn Figure 1.

To further improve the performance of our algorithm, we {ixo 3 and use a greedy heuristic to
construct the features. The greedy heuristic is able to@plrbitrarily long features by only calling
LMIP & x n times instead of)(n*) times, but does not have any guarantees. It starts with a set
of atomic features (i.e., just the variables in the domaims LMIP on each, and selects the (best)
feature with the highest score. Then, it creates candiéaterfes by conjoining this best feature from
the previous step with each atomic feature, runs LMIP on eauththen selects a best feature for the
next iteration. It repeats this process unqualsk or the score does not improve. This heuristic is
loosely based on the greedy approach of Della Pietra eR§l.[Ale also use dalance heuristido
reduce the size of the model learned; which imposes a forragaflarization constraint and biases
our search towards sparser models, in order to avoid ovtimgfitHere, given a set of features with
similar scores, we select a featuresuch that the difference between the scores ef 0 andF' = 1

is the smallest. The intuition behind this heuristic is tyamaintaining balance we reduce the height
of the feature graph and thus its size. Finally, in our impdatation, we do not return all possible
instantiations of the variables when a feature assignnielats/only one partition, unless the number
of remaining variables is smaller thdnThis is because even though a feature may not partition the
set of variables, it may still partition the data, therebgyuging complexity.

5 Experimental Evaluation

We evaluated LEM on one synthetic data set and four real vaoréss. Figure 2(f) lists the five data
sets and the number of atomic features in each. The synthati@in consists of samples from the
Alarm Bayesian network [3]. From the UCI machine learningasitory [5], we used the Adult and
MSNBC anonymous Web data domains. Temperature and Tradfisaarsor network data sets and
were used in Checketka and Guestrin [8].

We compared LEM to the standard Markov network structureniag algorithm of Della Pietra
et al.[12] (henceforth, called the DL scheme), the L1 apghnoaf Ravikumar et al. [24] and the
lazy thin-junction tree algorithm (LPACJT) of Chechetkald@Buestrin [8]. We used the following
parameters for LEMy = 3, andd = 0.05. We found that the results were insensitive to the
value ofy used. We suggest using any reasonably small valel. The LPACJT implementation
available from the authors requires entropies (computat the data) as input. We were unable to
compute the entropies in the required format because thew psopriety software that we did not
have access to, and therefore we use the results providdelauthors for the temperature, traffic
and alarm domains. We were unable to run LPACJT on the otheedtwnains. We altered the DL
algorithm to only evaluate candidate features that matékeat one example. This simple extension
vastly reduces the number of candidate features and giegihpves the algorithm’s efficiency. For
implementing DL, we use pseudo-likelihood [4] as a scorimgtion and optimized it via the limited-
memory BFGS algorithm [17]. For implementing L1, we used @ L-QN software package of
Andrew and Gao [1]. The neighborhood structures for L1 cambgged in two ways (logical-OR or
logical-AND of the structures); we tried both and used thst lome for plotting the results. For the
regularization, we tried penaltg {1, 2, 5, 10, 20, 25, 50, 100, 200, 500, 19Ghd used a tuning
set to pick the one that gave the best results. We used a thionedtof 24 hrs for each algorithm.

For each domain, we evaluated the algorithms on trainingiges varying from 100 to 10000. We
performed a five-fold train-test split. For the sensor neksptraffic and alarm domains, we use
the test set sizes provided in Chechtka and Guestrin [8].tH®@MSNBC and Adult domains, we

selected a test set consisting of 58265 and 7327 examplescta®ly. We evaluate the performance
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Figure 2:Figures (a)-(e) showing average log-Likelihood as a function of theitigudata size for LEM, DL,

L1 and LPACJT. Figure (f) reports the run-time in minutes for LEM, DId4&r for training set of siz&0000.

based on average-log-likelihood of the test data, givernedmed model. The log-likelihood of the
test data was computed exactly for the models output by LFPASWH LEM, because inference is
tractable in these models. The size of the feature graphsdday LEM ranged fron©O(n?) to
O(n?), comparable to those generated by LPACJT. Exact inferendée learned feature graphs
was a matter of milliseconds. For the Markov networks outpuDL and L1, we compute the
log-likelihood approximately using loopy Belief propaiget [20].

Figure 2 summarizes the results for the five domains. LEMifagmtly outperforms L1 on all the

domains except the Alarm dataset. It is better than the grB¢dscheme on three out of the five
domains while it is always better than LPACJT. Figure 2(fwh the timing results for LEM, DL

and L1. L1 is substantially faster than DL and LEM. DL is thevedst scheme.

6 Conclusions

We have presented an algorithm for learning a class of higgwtidth Markov networks that admit
tractable inference and closed-form parameter learnihgs dlass is much richer than thin junction
trees because it exploits context-specific independenge @terminism. We showed that our algo-
rithm has probabilistic performance guarantees undeitigsive assumption that the distribution at
each node in the (rooted) feature graph (which is definedmrdy a decreasing subset of variables as
we move further away from the root), is itself representélyle polynomial-sized feature graph and
in which the maximum feature-size at each node is boundéd ye believe that our new theoretical
insights further the understanding of structure learnimiylarkov networks, especially those having
high treewidth. In addition to the theoretical guarantees,showed that our algorithm has good
performance in practice, usually having higher test-¢elitiood than other competing approaches.
Although learning may be slow, inference always has quick@medictable runtime, which is linear
in the size of the feature graph. Intuitively, our methodssékely to perform well on large sparsely
dependent datasets.
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