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Abstract

We present an algorithm for learning high-treewidth Markovnetworks where in-
ference is still tractable. This is made possible by exploiting context-specific inde-
pendence and determinism in the domain. The class of models our algorithm can
learn has the same desirable properties as thin junction trees: polynomial inference,
closed-form weight learning, etc., but is much broader. Ouralgorithm searches for
a feature that divides the state space into subspaces where the remaining variables
decompose into independent subsets (conditioned on the feature and its negation)
and recurses on each subspace/subset of variables until no useful new features can
be found. We provide probabilistic performance guaranteesfor our algorithm un-
der the assumption that the maximum feature length is bounded by a constantk
(the treewidth can be much larger) and dependences are of bounded strength. We
also propose a greedy version of the algorithm that, while forgoing these guaran-
tees, is much more efficient. Experiments on a variety of domains show that our
approach outperforms many state-of-the-art Markov network structure learners.

1 Introduction

Markov networks (also known as Markov random fields, etc.) are an attractive class of joint prob-
ability models because of their generality and flexibility.However, this generality comes at a cost.
Inference in Markov networks is intractable [25], and approximate inference schemes can be un-
reliable, and often require much hand-crafting. Weight learning has no closed-form solution, and
requires convex optimization. Computing the gradient for optimization in turn requires inference.
Structure learning – the problem of finding the features of the Markov network – is also intractable
[15], and has weight learning and inference as subroutines.

Intractable inference and weight optimization can be avoided if we restrict ourselves todecomposable
Markov networks [22]. A decomposable model can be expressedas a product of distributions over
the cliques in the graph divided by the product of the distributions of their intersections. An arbitrary
Markov network can be converted into a decomposable one by triangulation (adding edges until every
cycle of length four or more has at least one chord). The resulting structure is called ajunction tree.
Goldman [13] proposed a method for learning Markov networkswithout numeric optimization based
on this idea. Unfortunately, the triangulated network can be exponentially larger than the original one,
limiting the applicability of this method. More recently, aseries of papers have proposed methods
for directly learning junction trees of bounded treewidth ([2, 21, 8] etc.). Unfortunately, since the
complexity of inference (and typically of learning) is exponential in the treewidth, only models of
very low treewidth (typically 2 or 3) are feasible in practice, and thin junction trees have not found
wide applicability.

Fortunately, low treewidth is an overly strong condition. Models can have high treewidth and still
allow tractable inference and closed-form weight learningfrom a reasonable number of samples, by
exploiting context-specific independence [6] and determinism [7]. Both of these result in clique dis-
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tributions that can be compactly expressed even if the cliques are large. In this paper we propose a
learning algorithm based on this observation. Inference algorithms that exploit context-specific inde-
pendence and determinism [7, 26, 11] have a common structure: they search for partial assignments
to variables that decompose the remaining variables into independent subsets, and recurse on these
smaller problems until trivial ones are obtained. Our algorithm uses a similar strategy, but at learning
time: it recursively attempts to find features (i.e., partial variable assignments) that decompose the
problem into smaller (nearly) independent subproblems, and stops when the data does not warrant
further decomposition.

Decomposable models can be expressed as both Markov networks and Bayesian networks, and state-
of-the-art Bayesian network learners extensively exploitcontext-specific independence [9]. How-
ever, they typically still learn intractable models. Lowd and Domingos [18] learned tractable high-
treewidth Bayesian networks by penalizing inference complexity along with model complexity in
a standard Bayesian network learner. Our approach can learnexponentially more compact models
by exploiting the additional flexibility of Markov networks, where features can overlap in arbitrary
ways. It can greatly speed up learning relative to standard Markov network learners because it avoids
weight optimization and inference, while Lowd and Domingos’ algorithm is much slower than stan-
dard Bayesian network learning (where, given complete data, weight optimization and inference are
already unnecessary). Perhaps most significantly, it is also more fundamental in that it is based on
identifying what makes inference tractable and directly exploiting it, potentially leading to a much
better accuracy/inference cost trade-off. As a result, ourapproach has formal guarantees, which
Lowd and Domingos’ algorithm lacks.

We provide both theoretical guarantees and empirical evidence for our approach. First, we provide
probabilistic performance guarantees for our algorithm bymaking certain assumptions about the
underlying distribution. These results rely on exhaustivesearch over features up to lengthk. (The
treewidth of the resulting model can still be as large as the number of variables.) We then propose
greedy heuristics for more efficient learning, and show empirically that the Markov networks learned
in this way are more accurate than thin junction trees as wellas networks learned using the algorithm
of Della Pietra et al. [12] and L1 regularization [16, 24], while allowing much faster inference (which
in practice translates into more accurate query answers).

2 Background: Junction Trees and Feature Graphs

We denote sets by capital letters and members of a set by smallletters. A double capital letter denotes
a set of subsets. We assume that all random variables have binary domains{0,1} (or {false,true}).
We make this assumption for simplicity of exposition; our analysis extends trivially to multi-valued
variables.

We begin with some necessary definitions. An atomic feature or literal is an assignment of a value to
a variable.x denotes the assignmentx = 1 while¬x denotesx = 0 (note that the distinction between
an atomic featurex and the variable which is also denoted byx is usually clear from context). A
feature, denoted byF , defined over a subset of variablesV (F ) is formed by conjoining atomic
features or literals, e.g.,x1 ∧¬x2 is a feature formed by conjoining two atomic featuresx1 and¬x2.
Given an assignment, denoted byV (F ), to all variables ofF , F is said to be satisfied or assigned the
value1 iff for all literals l ∈ F , it also holds thatl ∈ V (F ). A feature that is not satisfied is said to
be assigned the value0. Often, given a featureF , we will abuse notation and writeV (F ) asF .

A Markov network or a log-linear model is defined as a set of pairs (Fi, wi) whereFi is a feature
andwi is its weight. It represents the following joint probability distribution:

P (V ) =
1

Z
exp

(

∑

i

wi × Fi(V V (Fi))

)

(1)

whereV is a truth-assignment to all variablesV = ∪iV (Fi), Fi(V V (Gi)) = 1 if V V (Gi) satisfies
Fi, and0 otherwise, andZ is the normalization constant, often called thepartition function.

Next, we define junction trees. LetC = {C1, . . . , Cm} be a collection of subsets ofV such that:
(a)∪m

i=1Ci = V and (b) for each featureFj , there exists aCi ∈ C such that all variables ofFj are
contained inCi. EachCi is referred to as a clique.
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(a) A feature tree

Features Weights
¬(x1 ∧ x2) ∧ ¬(x3 ∧ x4) w1

¬(x1 ∧ x2) ∧ (x3 ∧ x4) w2

¬(x1 ∧ x2) ∧ ¬(x5 ∧ x6) w3

¬(x1 ∧ x2) ∧ (x5 ∧ x6) w4

(x1 ∧ x2) ∧ ¬(x3 ∧ x5) w5

(x1 ∧ x2) ∧ (x3 ∧ x5) w6

(x1 ∧ x2) ∧ ¬(x4 ∧ x6) w7

(x1 ∧ x2) ∧ (x4 ∧ x6) w8

(b) A Markov network

x1 x2 x4 x5 x6

x1 x2 x4 x5

x1 x2 x3 x4 x5

(c) A junction tree

Figure 1:Figure showing (a) a feature tree, (b) the Markov network corresponding to the leaf features of (a)
and (c) the (optimal) junction tree for the Markov network in (b). A leaf feature is formed by conjoining the
feature assignments along the path from the leaf to the root. For example, the feature corresponding to the right
most leaf node is:(x1 ∧ x2) ∧ (x4 ∧ x6). For the feature tree, ovals denote F-nodes and rectangles denote
A-nodes. For the junction tree, ovals denote cliques and rectangles denote separators. Notice that each F-node
in the feature tree has a feature of size bounded by2 while the maximum clique in the junction tree is of size5.
Moreover notice that the A-node corresponding to(x1 ∧ x2) = 0 induces a different variable decomposition as
compared with the A-node corresponding to(x1 ∧ x2) = 1.

DEFINITION 1. A treeT = (C, E) is ajunction tree iff it satisfies the running intersection property,
i.e.,∀Ci, Cj , Ck ∈ C, i 6= j 6= k, such thatCk lies on the unique simple path betweenCi andCj ,
x ∈ Ci∩Cj ⇒ x ∈ Ck. The treewidth ofT , denoted byw, is the size of the largest clique inC minus
one. The setSij ≡ Ci ∩ Cj is referred to as the separator corresponding to the edge(i − j) ∈ E.
The space complexity of representing a junction tree isO(

∑m
i=1 2

|Ci|) ≡ O(n× 2w+1).

Our goal is to exploit context-specific and deterministic dependencies that is not explicitly repre-
sented in junction trees. Representations that do this include arithmetic circuits [10] and AND/OR
graphs [11]. We will use a more convenient form for our purposes, which we callfeature graphs. In-
ference in feature graphs is linear in the size of the graph. For readers familiar with AND/OR graphs
[11], a feature tree (or graph) is simply an AND/OR tree (or graph) with OR nodes corresponding to
features and AND nodes corresponding to feature assignments.
DEFINITION 2. A feature tree denoted byST is a rooted-tree that consists of alternating levels of
feature nodes or F-nodes and feature assignment nodes or A-nodes. Each F-nodeF is labeled by
a featureF and has two child A-nodes labeled by0 and1, corresponding to the true and the false
assignments ofF respectively. Each A-nodeA hask ≥ 0 child F-nodes that satisfy the following
requirement. Let{FA,1, . . . ,FA,k} be the set of child F-nodes ofA and letD(FA,i) be the union
of all variables involved in the features associated withFA,i and all its descendants, then∀i, j ∈
{1, . . . , k}, i 6= j,D(FA,i) ∩D(FA,j) = ∅.

Semantically, each F-node represents conditioning while each A-node represents partitioning of the
variables into conditionally-independent subsets. The space complexity of representing a feature tree
is the number of its A-nodes. A feature graph denoted bySG is formed by merging identical sub-
trees of a feature treeST . It is easy to show that a feature graph generalizes a junction tree and in fact
any model that can be represented using a junction tree having treewidthk can also be represented
by a feature graph that uses onlyO(n × 2k) space [11]. In some cases, a feature graph can be
exponentially smaller than a junction tree because it can capture context-specific independence [6].

A feature tree can be easily converted to a Markov network. The corresponding Markov network has
one feature for each leaf node, formed by conjoining all feature assignments from the root to the leaf.
The following example demonstrates the relationship between a feature tree, a Markov network and
a junction tree.
EXAMPLE 1. Figure 1(a) shows a feature tree. Figure 1(b) shows the Markov network corresponding
to the leaf features of the feature tree given in Figure 1(a).Figure 1(c) shows the junction tree
for the Markov network given in 1(b). Notice that because thefeature tree uses context-specific
independence, all theF -nodes in the feature tree have a feature of size bounded by2 while the
maximum clique size of the junction tree is5. The junction tree given in Figure 1(b) requires25×2 =
64 potential values while the feature tree given in Figure 1(a)requires only10 A-nodes.

In this paper, we will present structure learning algorithms to learn feature trees only. We can do this
without loss of generality, because a feature graph can be constructed by caching information and
merging identical nodes, while learning (constructing) a feature tree.
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The distribution represented by a feature treeST can be defined procedurally as follows (for more
details see [11]). We assume that each leaf A-nodeAl is associated with a weightw(Al). For each
A-nodeA and each F-nodeF , we associate a value denoted byv(A) andv(F) respectively. We
compute these values recursively as follows from the leavesto the root. The value of all A-nodes
is initialized to1 while the value of all F-nodes is initialized to0. The value of the leaf A-nodeAl

is w(Al) × #(M(Al)) where#(M(Al)) is number of (full) variable assignments that satisfy the
constraintM(Al) formed by conjoining the feature-assignments from the rootto Al. The value of
an internal F-node is the sum of the values of the child A-nodes. The value of an internal A-node
Ap that hask children is the product of the values of its child F-nodes divided by[#(M(Ap))]

k−1

(the division takes care of double counting). Letv(Fr) be the value of the root node; computed as
described above. LetV be an assignment to all variablesV of the feature tree, then:

P (V ) =
vV (Fr)

v(Fr)

wherevV (Fr) is the value of the root node ofST computed as above in which each leaf A-node is
initialized instead tow(Al) if V satisfies the constraint formed by conjoining the feature-assignments
from the root toAl and0 otherwise.

3 Learning Efficient Structure

Algorithm 1 : LMIP: Low Mutual Information Partitioning

Input : A variable setV , sample dataD, mutual information subroutineI, a feature assignmentF , thresholdδ,
max set sizeq.

Output : A set of subsets ofV
QF = {Q1, . . . , Q|V |}, whereQi = {xi} // Q

F
is a set of singletons

if the subset ofD that satisfiesF is too smallthen
return QF

else
for A ⊆ V , |A| ≤ q do

if minX⊂AI(X,A\X|F ) > δ then
// find min using Queyranne’s algorithm [23] applied to the

subset of D satisfying F
merge allQi ∈ QF s.t.Qi ∩A 6= ∅.

return QF

We propose a feature-based structure learning algorithm that searches for a feature that divides the
configuration space into subspaces. We will assume that the selected feature or its negation divides
the (remaining) variables into conditionally independentpartitions (we don’t require this assumption
to be always satisfied, as we explain in the section on greedy heuristics and implementation details).
In practice, the notion of conditional independence is too strong. Therefore, as in previous work
[21, 8], we instead use conditional mutual information, denoted byI, to partition the set of variables.
For this we use the LMIP subroutine (see Algorithm 1), a variant of Chechetka and Guestrin’s [8]
LTCI algorithm that outputs a partitioning ofV . The runtime guarantees of LMIP follow from those
of LTCI and correctness guarantees follow in an analogous fashion. In general, estimating mutual
information between sets of random variables has time and sample complexity exponential in the
number of variables considered. However, we can be more efficient as we show below. We start with
a required definition.

DEFINITION 3. Given a feature assignmentF , a distributionP (V ) is (j, ǫ, F )-coverable if there
exists a set of cliquesC such that for everyCi ∈ C, |Ci| ≤ j andI(Ci, V \ Ci|F ) ≤ ǫ. Similarly,
given a featureF , a distributionP (V ) is (j, ǫ, F )-coverable if it is both(j, ǫ, F = 0)-coverable and
(j, ǫ, F = 1)-coverable.

LEMMA 1. Let A ⊂ V . Suppose there exists a distribution onV that is (j, ǫ, F )-coverable and
∀X ⊂ V where|X| ≤ j, it holds thatI(X ∩ A,X ∩ (V \A)|F ) ≤ δ. Then,I(A, V \A|F ) ≤
|V |(2ǫ+ δ).

Lemma 1 immediately leads to the following lemma:
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LEMMA 2. LetP (V ) be a distribution that is(j, ǫ, F )-coverable. Then LMIP, forq ≥ j, returns a
partitioning ofV into disjoint subsets{Q1, . . . , Qm} such that∀i, I(Qi, V \Qi|F ) ≤ |V |(2ǫ+ (j −
1)δ).

We summarize the time and space complexity of LMIP in the following lemma.

LEMMA 3. The time and space complexity of LMIP isO(
(

n
q

)

× n × JMI
q ) whereJMI

q is the time
complexity of estimating the mutual information between two disjoint sets which have combined
cardinality q.

Note that our actual algorithm will use a subroutine that estimates mutual information from data,
and the time complexity of this routine will be described in the section on sample complexity and
probabilistic performance guarantees.

Algorithm 2 : LEM: Learning Efficient Markov Networks
Input : Variable setV , sample dataS, mutual information subroutineI, feature lengthk, set size parameterq,

thresholdδ, an A-nodeA.
Output : A feature treeM
for each featureF of lengthk constructible forV do

QF=1 = LMIP(V , S, I, F = 1, δ, q);
QF=0 = LMIP (V , S, I, F = 0, δ, q)

G = argmaxF (Score(QF=0)+ Score(QF=1))// G is a feature
if |QG=0| = 1 and|QG=1| = 1 then

Create a feature tree corresponding to all possible assignments to the atomic features. Add this feature tree
as a child ofA;
return

Create a F-nodeG with G as its feature, and add it as a child ofA;
Create two A-child nodesAG,0 andAG,1 for G;
for i ∈ {0, 1} do

if |QG=i| > 1 then
for each component (subset ofV ) C ∈ QG=i do

SC = ProjectC({X ∈ S : X satisfiesG = i}) // SC is the set of
instantiations of V in S that satisfy G = i restricted to the
variables in C

LEM(C, SC , I, k, q, δ,AG,i) // Recursion

else
Create a feature tree corresponding to all possible assignments to the atomic features. Add this feature
tree as a child ofAG,i.

Next, we present our structure learning algorithm called LEM (see Algorithm 2) which utilizes the
LMIP subroutine to learn feature trees from data. The algorithm has probabilistic performance guar-
antees if we make some assumptions on the type of the distribution. We present these guarantees in
the next subsection. Algorithm 2 operates as follows. First, it runs the LMIP subroutine on all pos-
sible features of lengthk constructible fromV . Recall that given a feature assignmentF , the LMIP
sub-routine partitions the variables into (approximately) conditionally independent components. It
then selects a featureG having the highest score. Intuitively, to reduce the inference time and the size
of the model, we should try to balance the trade-off between increasing the number of partitions and
maintaining partition size uniformity (namely, we would want the partition sizes to be almost equal).
The following score function achieves this objective. LetQ = {Q1, . . . , Qm} be a m-partition ofV ,
then thescoreof Q is given by:Score(Q) = 1∑

m
i=1

2|Qi|
, where the denominator bounds worst-case

inference complexity.

After selecting a featureG, the algorithm creates a F-node corresponding toG and two child A-nodes
corresponding to the true and the false assignments ofG. Then, corresponding to each element of
QG=1, it recursively creates a child node forG = 1 (and similarly forG = 0 usingQG=0). An
interesting special case is when either|QG=1| = 1 or |QG=0| = 1 or when both conditions hold.
In this case, no partitioning ofV exists for either or both the value assignments ofG and therefore
we return a feature tree which has2|V | leafA-nodes corresponding to all possible instantiations of
the remaining variables. In practice, because of the exponential dependence on|V |, we would want
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this condition to hold only when a few variables remain. To obtain guarantees, however, we need
stronger conditions to be satisfied. We describe these guarantees next.

3.1 Theoretical Guarantees

To derive performance guarantees and to guarantee polynomial complexity, we make some funda-
mental assumptions about the data and the distributionP (V ) that we are trying to learn. Intuitively,
if there exists a featureF such that the distributionP (V ) at each recursive call to LEM is(j, ǫ, F )-
coverable, then the LMIP sub-routine is guaranteed to return at least a two-way partitioning ofV .
Assume thatP (V ) is such that at each recursive call to LEM, there exists a uniqueF (such that the
distribution at the recursive call is(j, ǫ, F )-coverable). Then, LEM is guaranteed to find this unique
feature tree. However, the trouble is that at each step of therecursion, there may existm > 1 can-
didate featuresthat satisfy this property. Therefore, we want this coverability requirement to hold
not only recursively but also for each candidate feature (ateach recursive call). The following two
definitions and Theorem 1 capture this intuition.
DEFINITION 4. Given a constantδ > 0, we say that a distributionP (V ) satisfies the(j, ǫ,m,G)
assumption if|V | ≤ j or if the following property is satisfied. For every featureF , and each assign-
mentF of F , such that|V (F )| ≤ m, P (V ) is (j, ǫ, F )-coverable and for any partitioningS1, ..., Sz

of V with z ≥ 2, such that for eachi, I(Si, V \Si|F ∧G) ≤ |V |(2ǫ+ δ) andP (S1), ..., P (Sz) each
satisfy the(j, ǫ,m,G ∧ F ) assumption.

DEFINITION 5. We say the a sequence of pairs(Fn, Sn), (Fn−1, Sn−1), . . . , (F 0, S0 = V ) sat-
isfies thenested context independence condition for(θ, w) if ∀i, Si ⊆ Si−1 and the distribu-
tion on V conditioned on the satisfaction ofGi−1 = (F i−1 ∧ F i−2 ∧ . . . ∧ F 0) is such that
I(Si, Si−1\Si|Gi−1) ≤ |Si−1|(2θ + w).
THEOREM 1. Given a distributionP (V ) that satisfies the(j, ǫ,m, true)-assumption and a perfect
mutual information oracleI, LEM(V , S, I, k, j + 1, δ) returns a feature treeST such that each leaf
feature ofST satisfies the nested context independence condition for(ǫ, j × δ).

3.1.1 Sample Complexity and Probabilistic Performance Guarantees

The foregoing analysis relies on a perfect, deterministic mutual information subroutineI. In real-
ity, all we have is sample data and probabilistic mutual information subroutines. As the following
theorem shows, we can get estimates ofI(A,B|F ) with accuracy±∆ and probability1 − γ with a
number of samples and running time polynomial in1

∆ and log1
γ

.

LEMMA 4. (Hoffgen [14]) The entropy of a probability distribution over 2k + 2 discrete vari-
ables with domain sizeR can be estimated with accuracy∆ with probability at least1 − γ using
F (k,R,∆, γ) = O(R

4k+4

∆2 log2(R
2k+2

∆2 )log(R
2k+2

γ
)) samples and the same amount of time.

To ensure that our algorithm doesn’t run out of data somewhere in the recursion, we have to
strengthen our assumptions, as we define below.
DEFINITION 6. If P (V ) satisfies the(j, ǫ,m, true)-assumption and a set of sample dataH drawn
from the distribution is such that for anyGi−1 = F i−1 ∧ . . . F 0 if neitherFi = 0 or Fi = 1 hold in
less than some constant fractionc of the subset ofH that satisfiesGi−1, then we say thatH satisfies
thec-strengthened(j, ǫ,m, true) assumption.
THEOREM 2 (Probabilistic performance guarantees). Let P (V ) be a distribution that sat-
isfies the (j, ǫ,m, true) assumption and letH be the training data which satisfies the
c-strengthened(j, ǫ,m, true) assumption from which we drawS samples of sizeT =

( 1
c
)DF ( j−1

2 , |V |,∆, γ
nm+j+2(j+1)3 ), whereD is the worst-case length of any leaf feature returned

by the algorithm. Given a mutual information subroutineÎ implied by Lemma 4, LEM(V , S, Î, m,
j + 1, ǫ + ∆) returns a feature tree, the leaves of which satisfy the nested context independence
condition for(ǫ, j × (ǫ+∆)), with probability1− γ.

4 Greedy Heuristics and Implementation Details

When implemented naively, Algorithm 2 may be computationally infeasible. The most expensive
step in LEM is the LMIP sub-routine which is calledO(nk) times at each A-node of the feature
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graph. Given a max set size ofq, LMIP requires running Queyranne’s algorithm [23] (complexity
O(q3)) to minimizeminX⊂AI(X,V \X|F ) over every|A| ≤ q. Thus, its overall time complexity
isO(nq × q3). Also, our theoretical analysis assumes access to a mutual information oracle which is
not available in practice and one has to computeI(X,V \X|F ) from data. In our implementation,
we used Moore and Lee’s AD-trees [19] to pre-compute and cache the sufficient statistics (counts),
in advance, so that at each step,I(X,V \X|F ) can be computed efficiently. A second improvement
that we considered is due to Chechtka and Guestrin [8]. It is based on the observation that ifA is a
subset of a connected componentQ ∈ QF , then we don’t need to computeminX⊂AI(X,V \X|F ),
because merging allQi ∈ QF s.t.Qi∩A 6= ∅. would not changeQF . In spite of these improvements,
our algorithm is not practical forq > 3 andk > 3. Note however, that low values ofq andk are not
entirely problematic for our approach because we may still be able to induce large treewidth models
by taking advantage of context specific independence, as depicted in Figure 1.

To further improve the performance of our algorithm, we fixq to 3 and use a greedy heuristic to
construct the features. The greedy heuristic is able to split on arbitrarily long features by only calling
LMIP k × n times instead ofO(nk) times, but does not have any guarantees. It starts with a set
of atomic features (i.e., just the variables in the domain),runs LMIP on each, and selects the (best)
feature with the highest score. Then, it creates candidate features by conjoining this best feature from
the previous step with each atomic feature, runs LMIP on each, and then selects a best feature for the
next iteration. It repeats this process untili equalsk or the score does not improve. This heuristic is
loosely based on the greedy approach of Della Pietra et al.[12]. We also use abalance heuristicto
reduce the size of the model learned; which imposes a form of regularization constraint and biases
our search towards sparser models, in order to avoid over-fitting. Here, given a set of features with
similar scores, we select a featureF such that the difference between the scores ofF = 0 andF = 1
is the smallest. The intuition behind this heuristic is thatby maintaining balance we reduce the height
of the feature graph and thus its size. Finally, in our implementation, we do not return all possible
instantiations of the variables when a feature assignment yields only one partition, unless the number
of remaining variables is smaller than5. This is because even though a feature may not partition the
set of variables, it may still partition the data, thereby reducing complexity.

5 Experimental Evaluation

We evaluated LEM on one synthetic data set and four real worldones. Figure 2(f) lists the five data
sets and the number of atomic features in each. The syntheticdomain consists of samples from the
Alarm Bayesian network [3]. From the UCI machine learning repository [5], we used the Adult and
MSNBC anonymous Web data domains. Temperature and Traffic are sensor network data sets and
were used in Checketka and Guestrin [8].

We compared LEM to the standard Markov network structure learning algorithm of Della Pietra
et al.[12] (henceforth, called the DL scheme), the L1 approach of Ravikumar et al. [24] and the
lazy thin-junction tree algorithm (LPACJT) of Chechetka and Guestrin [8]. We used the following
parameters for LEM:q = 3, and δ = 0.05. We found that the results were insensitive to the
value ofδ used. We suggest using any reasonably small value≤ 0.1. The LPACJT implementation
available from the authors requires entropies (computed from the data) as input. We were unable to
compute the entropies in the required format because they use a propriety software that we did not
have access to, and therefore we use the results provided by the authors for the temperature, traffic
and alarm domains. We were unable to run LPACJT on the other two domains. We altered the DL
algorithm to only evaluate candidate features that match atleast one example. This simple extension
vastly reduces the number of candidate features and greatlyimproves the algorithm’s efficiency. For
implementing DL, we use pseudo-likelihood [4] as a scoring function and optimized it via the limited-
memory BFGS algorithm [17]. For implementing L1, we used theOWL-QN software package of
Andrew and Gao [1]. The neighborhood structures for L1 can bemerged in two ways (logical-OR or
logical-AND of the structures); we tried both and used the best one for plotting the results. For the
regularization, we tried penalty= {1, 2, 5, 10, 20, 25, 50, 100, 200, 500, 1000} and used a tuning
set to pick the one that gave the best results. We used a time-bound of 24 hrs for each algorithm.

For each domain, we evaluated the algorithms on training setsizes varying from 100 to 10000. We
performed a five-fold train-test split. For the sensor networks, traffic and alarm domains, we use
the test set sizes provided in Chechtka and Guestrin [8]. Forthe MSNBC and Adult domains, we
selected a test set consisting of 58265 and 7327 examples respectively. We evaluate the performance
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Data set #Features Time in minutes

DL L1 LEM

Alarm 148 60 14 91
Traffic 128 1440 2 691
Temp. 216 1440 21 927
MSNBC 17 1440 1 31
Adult 125 22 19 48

(f) Data set characteristics and Tim-
(f) Data set characteristics and timing
results

Figure 2:Figures (a)-(e) showing average log-Likelihood as a function of the training data size for LEM, DL,
L1 and LPACJT. Figure (f) reports the run-time in minutes for LEM, DL and L1 for training set of size10000.

based on average-log-likelihood of the test data, given thelearned model. The log-likelihood of the
test data was computed exactly for the models output by LPACJT and LEM, because inference is
tractable in these models. The size of the feature graphs learned by LEM ranged fromO(n2) to
O(n3), comparable to those generated by LPACJT. Exact inference on the learned feature graphs
was a matter of milliseconds. For the Markov networks outputby DL and L1, we compute the
log-likelihood approximately using loopy Belief propagation [20].

Figure 2 summarizes the results for the five domains. LEM significantly outperforms L1 on all the
domains except the Alarm dataset. It is better than the greedy DL scheme on three out of the five
domains while it is always better than LPACJT. Figure 2(f) shows the timing results for LEM, DL
and L1. L1 is substantially faster than DL and LEM. DL is the slowest scheme.

6 Conclusions

We have presented an algorithm for learning a class of high-treewidth Markov networks that admit
tractable inference and closed-form parameter learning. This class is much richer than thin junction
trees because it exploits context-specific independence and determinism. We showed that our algo-
rithm has probabilistic performance guarantees under the recursive assumption that the distribution at
each node in the (rooted) feature graph (which is defined onlyover a decreasing subset of variables as
we move further away from the root), is itself representableby a polynomial-sized feature graph and
in which the maximum feature-size at each node is bounded byk. We believe that our new theoretical
insights further the understanding of structure learning in Markov networks, especially those having
high treewidth. In addition to the theoretical guarantees,we showed that our algorithm has good
performance in practice, usually having higher test-set likelihood than other competing approaches.
Although learning may be slow, inference always has quick and predictable runtime, which is linear
in the size of the feature graph. Intuitively, our method seems likely to perform well on large sparsely
dependent datasets.
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