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Abstract

For a densityf onR
d, ahigh-density clusteris any connected component of{x :

f(x) ≥ λ}, for someλ > 0. The set of all high-density clusters form a hierarchy
called thecluster treeof f . We present a procedure for estimating the cluster tree
given samples fromf . We give finite-sample convergence rates for our algorithm,
as well as lower bounds on the sample complexity of this estimation problem.

1 Introduction

A central preoccupation of learning theory is to understandwhat statistical estimation based on a
finite data set reveals about the underlying distribution from which the data were sampled. For
classificationproblems, there is now a well-developed theory of generalization. Forclustering,
however, this kind of analysis has proved more elusive.

Consider for instancek-means, possibly the most popular clustering procedure in use today. If
this procedure is run on pointsX1, . . . , Xn from distributionf , and is told to findk clusters, what
do these clusters reveal aboutf? Pollard [8] proved a basic consistency result: if the algorithm
always finds the global minimum of thek-means cost function (which is NP-hard, see Theorem 3
of [3]), then asn → ∞, the clustering is the globally optimalk-means solution forf . This result,
however impressive, leaves the fundamental question unanswered: is the bestk-means solution tof
an interesting or desirable quantity, in settings outside of vector quantization?

In this paper, we are interested in clustering procedures whose output on a finite sample converges
to “natural clusters” of the underlying distributionf . There are doubtless many meaningful ways
to define natural clusters. Here we follow some early work on clustering (for instance, [5]) by
associating clusters withhigh-density connected regions. Specifically, a cluster of densityf is any
connected component of{x : f(x) ≥ λ}, for anyλ > 0. The collection of all such clusters forms
an (infinite) hierarchy called thecluster tree(Figure 1).

Are there hierarchical clustering algorithms which converge to the cluster tree? Previous theory
work [5, 7] has provided weak consistency results for the single-linkage clustering algorithm, while
other work [13] has suggested ways to overcome the deficiencies of this algorithm by making it
more robust, but without proofs of convergence. In this paper, we propose a novel way to make
single-linkage more robust, while retaining most of its elegance and simplicity (see Figure 3). We
establish its finite-sample rate of convergence (Theorem 6); the centerpiece of our argument is a
result on continuum percolation (Theorem 11). We also give alower bound on the problem of
cluster tree estimation (Theorem 12), which matches our upper bound in its dependence on most of
the parameters of interest.

2 Definitions and previous work

Let X be a subset ofRd. We exclusively consider Euclidean distance onX , denoted‖ · ‖. Let
B(x, r) be the closed ball of radiusr aroundx.
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Figure 1: A probability densityf onR, and three of its clusters:C1, C2, andC3.

2.1 The cluster tree

We start with notions of connectivity. ApathP in S ⊂ X is a continuous1 − 1 functionP :

[0, 1] → S. If x = P (0) andy = P (1), we writex
P
 y, and we say thatx andy are connected in

S. This relation – “connected inS” – is an equivalence relation that partitionsS into its connected
components. We sayS ⊂ X is connectedif it has a single connected component.

The cluster tree is a hierarchy each of whose levels is a partition of a subsetof X , which we will
occasionally call asubpartitionof X . WriteΠ(X ) = {subpartitions ofX}.

Definition 1 For anyf : X → R, thecluster tree off is a functionCf : R → Π(X ) given by

Cf (λ) = connected components of{x ∈ X : f(x) ≥ λ}.
Any element ofCf (λ), for anyλ, is called aclusterof f .

For anyλ, Cf (λ) is a set of disjoint clusters ofX . They form a hierarchy in the following sense.

Lemma 2 Pick anyλ′ ≤ λ. Then:

1. For anyC ∈ Cf (λ), there existsC ′ ∈ Cf (λ
′) such thatC ⊆ C ′.

2. For anyC ∈ Cf (λ) andC ′ ∈ Cf (λ
′), eitherC ⊆ C ′ or C ∩ C ′ = ∅.

We will sometimes deal with the restriction of the cluster tree to a finite set of pointsx1, . . . , xn.
Formally, the restriction of a subpartitionC ∈ Π(X ) to these points is defined to beC[x1, . . . , xn] =
{C ∩ {x1, . . . , xn} : C ∈ C}. Likewise, the restriction of the cluster tree isCf [x1, . . . , xn] : R →
Π({x1, . . . , xn}), whereCf [x1, . . . , xn](λ) = Cf (λ)[x1, . . . , xn]. See Figure 2 for an example.

2.2 Notion of convergence and previous work

Suppose a sampleXn ⊂ X of sizen is used to construct a treeCn that is an estimate ofCf . Hartigan
[5] provided a very natural notion of consistency for this setting.

Definition 3 For any setsA,A′ ⊂ X , letAn (resp,A′
n) denote the smallest cluster ofCn containing

A ∩ Xn (resp,A′ ∩ Xn). We sayCn is consistent if, wheneverA andA′ are different connected
components of{x : f(x) ≥ λ} (for someλ > 0), P(An is disjoint fromA′

n) → 1 asn → ∞.

It is well known that ifXn is used to build a uniformly consistent density estimatefn (that is,
supx |fn(x) − f(x)| → 0), then the cluster treeCfn is consistent; see the appendix for details.
The big problem is thatCfn is not easy to compute for typical density estimatesfn: imagine, for
instance, how one might go about trying to find level sets of a mixture of Gaussians! Wong and
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Figure 2: A probability densityf , and the restriction ofCf to a finite set of eight points.

Lane [14] have an efficient procedure that tries to approximateCfn whenfn is ak-nearest neighbor
density estimate, but they have not shown that it preserves the consistency property ofCfn .

There is a simple and elegant algorithm that is a plausible estimator of the cluster tree:single
linkage(or Kruskal’s algorithm); see the appendix for pseudocode. Hartigan [5] has shown that it is
consistent in one dimension (d = 1). But he also demonstrates, by a lovely reduction to continuum
percolation, that this consistency fails in higher dimension d ≥ 2. The problem is the requirement
thatA ∩ Xn ⊂ An: by the time the clusters are large enough that one of them contains all ofA,
there is a reasonable chance that this cluster will be so big as to also contain part ofA′.

With this insight, Hartigan defines a weaker notion offractional consistency, under whichAn (resp,
A′

n) need not containall of A∩Xn (resp,A′∩Xn), but merely a sizeable chunk of it – and ought to
be very close (at distance→ 0 asn → ∞) to the remainder. He then shows that single linkage has
this weaker consistency property for any pairA,A′ for which the ratio ofinf{f(x) : x ∈ A∪A′} to
sup{inf{f(x) : x ∈ P} : pathsP fromA toA′} is sufficiently large. More recent work by Penrose
[7] closes the gap and shows fractional consistency whenever this ratio is> 1.

A more robust version of single linkage has been proposed by Wishart [13]: when connecting points
at distancer from each other, only consider points that have at leastk neighbors within distancer
(for somek > 2). Thus initially, whenr is small, only the regions of highest density are available for
linkage, while the rest of the data set is ignored. Asr gets larger, more and more of the data points
become candidates for linkage. This scheme is intuitively sensible, but Wishart does not provide a
proof of convergence. Thus it is unclear how to setk, for instance.

Stuetzle and Nugent [12] have an appealing top-down scheme for estimating the cluster tree, along
with a post-processing step (calledrunt pruning) that helps identify modes of the distribution. The
consistency of this method has not yet been established.

Several recent papers [6, 10, 9, 11] have considered the problem of recovering the connected com-
ponents of{x : f(x) ≥ λ} for a user-specifiedλ: the flat version of our problem. In particular,
the algorithm of [6] is intuitively similar to ours, though they use a single graph in which each point
is connected to itsk nearest neighbors, whereas we have a hierarchy of graphs in which each point
is connected to other points at distance≤ r (for variousr). Interestingly,k-nn graphs are valuable
for flat clustering because they can adapt to clusters of different scales (different average interpoint
distances). But they are challenging to analyze and seem to require various regularity assumptions
on the data. A pleasant feature of the hierarchical setting is that different scales appear at different
levels of the tree, rather than being collapsed together. This allows the use ofr-neighbor graphs, and
makes possible an analysis that has minimal assumptions on the data.

3 Algorithm and results

In this paper, we consider a generalization of Wishart’s scheme and of single linkage, shown in
Figure 3. It has two free parameters:k andα. For practical reasons, it is of interest to keep these as
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1. For eachxi setrk(xi) = inf{r : B(xi, r) containsk data points}.

2. Asr grows from0 to∞:

(a) Construct a graphGr with nodes{xi : rk(xi) ≤ r}.
Include edge(xi, xj) if ‖xi − xj‖ ≤ αr.

(b) Let Ĉ(r) be the connected components ofGr.

Figure 3: Algorithm for hierarchical clustering. The inputis a sampleXn = {x1, . . . , xn} from
densityf on X . Parametersk andα need to be set. Single linkage is(α = 1, k = 2). Wishart
suggestedα = 1 and largerk.

small as possible. We provide finite-sample convergence rates for all1 ≤ α ≤ 2 and we can achieve
k ∼ d log n, which we conjecture to be the best possible, ifα >

√
2. Our rates forα = 1 forcek to

be much larger, exponential ind. It is a fascinating open problem to determine whether the setting
(α = 1, k ∼ d log n) yields consistency.

3.1 A notion of cluster salience

Suppose densityf is supported on some subsetX of Rd. We will show that the hierarchical cluster-
ing procedure is consistent in the sense of Definition 3. But the more interesting question is, what
clusters will be identified from afinitesample? To answer this, we introduce a notion of salience.

The first consideration is that a cluster is hard to identify if it contains a thin “bridge” that would
make it look disconnected in a small sample. To control this,we consider a “buffer zone” of width
σ around the clusters.

Definition 4 For Z ⊂ R
d andσ > 0, writeZσ = Z +B(0, σ) = {y ∈ R

d : infz∈Z ‖y − z‖ ≤ σ}.

An important technical point is thatZσ is a full-dimensional set, even ifZ itself is not.

Second, the ease of distinguishing two clustersA andA′ depends inevitably upon the separation
between them. To keep things simple, we’ll use the sameσ as a separation parameter.

Definition 5 Let f be a density onX ⊂ R
d. We say thatA,A′ ⊂ X are (σ, ǫ)-separated if there

existsS ⊂ X (separator set) such that:

• Any path inX fromA toA′ intersectsS.

• supx∈Sσ
f(x) < (1− ǫ) infx∈Aσ∪A′

σ
f(x).

Under this definition,Aσ andA′
σ must lie withinX , otherwise the right-hand side of the inequality

is zero. However,Sσ need not be contained inX .

3.2 Consistency and finite-sample rate of convergence

Here we state the result forα >
√
2 andk ∼ d log n. The analysis section also has results for

1 ≤ α ≤ 2 andk ∼ (2/α)dd log n.

Theorem 6 There is an absolute constantC such that the following holds. Pick anyδ, ǫ > 0, and
run the algorithm on a sampleXn of sizen drawn fromf , with settings

√
2

(
1 +

ǫ2√
d

)
≤ α ≤ 2 and k = C · d log n

ǫ2
· log2 1

δ
.

Then there is a mappingr : [0,∞) → [0,∞) such that with probability at least1− δ, the following
holds uniformly for all pairs of connected subsetsA,A′ ⊂ X : If A,A′ are (σ, ǫ)-separated (forǫ
and someσ > 0), and if

λ := inf
x∈Aσ∪A′

σ

f(x) ≥ 1

vd(σ/2)d
· k
n
·
(
1 +

ǫ

2

)
(*)

wherevd is the volume of the unit ball inRd, then:
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1. Separation.A ∩Xn is disconnected fromA′ ∩Xn in Gr(λ).

2. Connectedness.A ∩Xn andA′ ∩Xn are each individually connected inGr(λ).

The two parts of this theorem – separation and connectedness– are proved in Sections 3.3 and 3.4.

We mention in passing that this finite-sample result impliesconsistency (Definition 3): asn → ∞,
takekn = (d log n)/ǫ2n with any schedule of(ǫn : n = 1, 2, . . .) such thatǫn → 0 andkn/n → 0.
Under mild conditions, any two connected componentsA,A′ of {f ≥ λ} are(σ, ǫ)-separated for
someσ, ǫ > 0 (see appendix); thus they will get distinguished for sufficiently largen.

3.3 Analysis: separation

The cluster tree algorithm depends heavily on the radiirk(x): the distance within whichx’s nearest
k neighbors lie (includingx itself). Thus the empirical probability mass ofB(x, rk(x)) is k/n. To
show thatrk(x) is meaningful, we need to establish that the mass of this ballunder densityf is also,
very approximately,k/n. The uniform convergence of these empirical counts followsfrom the fact
that balls inRd have finite VC dimension,d + 1. Using uniform Bernstein-type bounds, we get a
set of basic inequalities that we use repeatedly.

Lemma 7 Assumek ≥ d log n, and fix someδ > 0. Then there exists a constantCδ such that with
probability> 1− δ, every ballB ⊂ R

d satisfies the following conditions:

f(B) ≥ Cδd log n

n
=⇒ fn(B) > 0

f(B) ≥ k

n
+

Cδ

n

√
kd log n =⇒ fn(B) ≥ k

n

f(B) ≤ k

n
− Cδ

n

√
kd log n =⇒ fn(B) <

k

n

Herefn(B) = |Xn ∩B|/n is the empirical mass ofB, whilef(B) =
∫
B
f(x)dx is its true mass.

PROOF: See appendix.Cδ = 2Co log(2/δ), whereCo is the absolute constant from Lemma 16.�

We will henceforth think ofδ as fixed, so that we do not have to repeatedly quantify over it.

Lemma 8 Pick0 < r < 2σ/(α+ 2) such that

vdr
dλ ≥ k

n
+

Cδ

n

√
kd log n

vdr
dλ(1− ǫ) <

k

n
− Cδ

n

√
kd log n

(recall thatvd is the volume of the unit ball inRd). Then with probability> 1− δ:

1. Gr contains all points in(Aσ−r ∪A′
σ−r) ∩Xn and no points inSσ−r ∩Xn.

2. A ∩Xn is disconnected fromA′ ∩Xn in Gr.

PROOF: For (1), any pointx ∈ (Aσ−r∪A′
σ−r) hasf(B(x, r)) ≥ vdr

dλ; and thus, by Lemma 7, has
at leastk neighbors within radiusr. Likewise, any pointx ∈ Sσ−r hasf(B(x, r)) < vdr

dλ(1− ǫ);
and thus, by Lemma 7, has strictly fewer thank neighbors within distancer.

For (2), since points inSσ−r are absent fromGr, any path fromA to A′ in that graph must have an
edge acrossSσ−r. But any such edge has length at least2(σ − r) > αr and is thus not inGr. �

Definition 9 Definer(λ) to be the value ofr for whichvdrdλ = k
n + Cδ

n

√
kd log n.

To satisfy the conditions of Lemma 8, it suffices to takek ≥ 4C2
δ (d/ǫ

2) log n; this is what we use.
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Figure 4:Left: P is a path fromx to x′, andπ(xi) is the point furthest along the path that is within
distancer of xi. Right: The next point,xi+1 ∈ Xn, is chosen from a slab ofB(π(xi), r) that is
perpendicular toxi − π(xi) and has width2ζ/

√
d.

3.4 Analysis: connectedness

We need to show that points inA (and similarlyA′) are connected inGr(λ). First we state a simple
bound (proved in the appendix) that works ifα = 2 andk ∼ d log n; later we consider smallerα.

Lemma 10 Suppose1 ≤ α ≤ 2. Then with probability≥ 1 − δ, A ∩ Xn is connected inGr

wheneverr ≤ 2σ/(2 + α) and the conditions of Lemma 8 hold, and

vdr
dλ ≥

(
2

α

)d
Cδd log n

n
.

Comparing this to the definition ofr(λ), we see that choosingα = 1 would entailk ≥ 2d, which is
undesirable. We can get a more reasonable setting ofk ∼ d log n by choosingα = 2, but we’d like
α to be as small as possible. A more refined argument shows thatα ≈

√
2 is enough.

Theorem 11 Supposeα2 ≥ 2(1 + ζ/
√
d), for some0 < ζ ≤ 1. Then, with probability> 1 − δ,

A ∩Xn is connected inGr wheneverr ≤ σ/2 and the conditions of Lemma 8 hold, and

vdr
dλ ≥ 8

ζ
· Cδd log n

n
.

PROOF: We have already made heavy use of uniform convergence over balls. We now also require
a more complicated classG, each element of which is theintersectionof an open ball and a slab
defined by two parallel hyperplanes. Formally, each of thesefunctions is defined by a centerµ and
a unit directionu, and is the indicator function of the set

{z ∈ R
d : ‖z − µ‖ < r, |(z − µ) · u| ≤ ζr/

√
d}.

We will describe any such set as “the slab ofB(µ, r) in directionu”. A simple calculation (see
Lemma 4 of [4]) shows that the volume of this slab is at leastζ/4 that ofB(x, r). Thus, if the slab lies
entirely inAσ, its probability mass is at least(ζ/4)vdrdλ. By uniform convergence overG (which
has VC dimension2d), we can then conclude (as in Lemma 7) that if(ζ/4)vdr

dλ ≥ (2Cδd log n)/n,
then with probability at least1− δ, every such slab withinA contains at least one data point.

Pick anyx, x′ ∈ A∩Xn; there is a pathP in A with x
P
 x′. We’ll identify a sequence of data points

x0 = x, x1, x2, . . ., ending inx′, such that for everyi, pointxi is active inGr and‖xi−xi+1‖ ≤ αr.
This will confirm thatx is connected tox′ in Gr.

To begin with, recall thatP is a continuous1− 1 function from[0, 1] intoA. We are also interested
in the inverseP−1, which sends a point on the path back to its parametrization in [0, 1]. For any
point y ∈ X , defineN(y) to be the portion of[0, 1] whose image underP lies inB(y, r): that is,
N(y) = {0 ≤ z ≤ 1 : P (z) ∈ B(y, r)}. If y is within distancer of P , thenN(y) is nonempty.
Defineπ(y) = P (supN(y)), the furthest point along the path within distancer of y (Figure 4, left).

The sequencex0, x1, x2, . . . is defined iteratively;x0 = x, and fori = 0, 1, 2, . . . :

• If ‖xi − x′‖ ≤ αr, setxi+1 = x′ and stop.
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• By construction,xi is within distancer of pathP and henceN(xi) is nonempty.

• Let B be the open ball of radiusr aroundπ(xi). The slab ofB in directionxi − π(xi)
must contain a data point; this isxi+1 (Figure 4, right).

The process eventually stops because eachπ(xi+1) is strictly further along pathP than π(xi);
formally, P−1(π(xi+1)) > P−1(π(xi)). This is because‖xi+1 − π(xi)‖ < r, so by continuity of
the functionP , there are points further along the path (beyondπ(xi)) whose distance toxi+1 is still
< r. Thusxi+1 is distinct fromx0, x1, . . . , xi. Since there are finitely many data points, the process
must terminate, so the sequence{xi} does constitute a path fromx to x′.

Eachxi lies in Ar ⊆ Aσ−r and is thus active inGr (Lemma 8). Finally, the distance between
successive points is:

‖xi − xi+1‖2 = ‖xi − π(xi) + π(xi)− xi+1‖2
= ‖xi − π(xi)‖2 + ‖π(xi)− xi+1‖2 + 2(xi − π(xi)) · (π(xi)− xi+1)

≤ 2r2 +
2ζr2√

d
≤ α2r2,

where the second-last inequality comes from the definition of slab.�

To complete the proof of Theorem 6, takek = 4C2
δ (d/ǫ

2) log n, which satisfies the requirements
of Lemma 8 as well as those of Theorem 11, usingζ = 2ǫ2. The relationship that definesr(λ)
(Definition 9) then translates into

vdr
dλ =

k

n

(
1 +

ǫ

2

)
.

This shows that clusters at density levelλ emerge when the growing radiusr of the cluster tree
algorithm reaches roughly(k/(λvdn))1/d. In order for(σ, ǫ)-separated clusters to be distinguished,
we need this radius to be at mostσ/2; this is what yields the final lower bound onλ.

4 Lower bound

We have shown that the algorithm of Figure 3 distinguishes pairs of clusters that are(σ, ǫ)-separated.
The number of samples it requires to capture clusters at density ≥ λ is, by Theorem 6,

O

(
d

vd(σ/2)dλǫ2
log

d

vd(σ/2)dλǫ2

)
,

We’ll now show that this dependence onσ, λ, andǫ is optimal. The only room for improvement,
therefore, is in constants involvingd.

Theorem 12 Pick anyǫ in (0, 1/2), anyd > 1, and anyσ, λ > 0 such thatλvd−1σ
d < 1/50. Then

there exist: an input spaceX ⊂ R
d; a finite family of densitiesΘ = {θi} onX ; subsetsAi, A

′
i, Si ⊂

X such thatAi andA′
i are (σ, ǫ)-separated bySi for densityθi, andinfx∈Ai,σ∪A′

i,σ
θi(x) ≥ λ, with

the following additional property.

Consider any algorithm that is givenn ≥ 100 i.i.d. samplesXn from someθi ∈ Θ and, with
probability at least1/2, outputs a tree in which the smallest cluster containingAi ∩Xn is disjoint
from the smallest cluster containingA′

i ∩Xn. Then

n = Ω

(
1

vdσdλǫ2d1/2
log

1

vdσdλ

)
.

PROOF: We start by constructing the various spaces and densities.X is made up of two disjoint
regions: a cylinderX0, and an additional regionX1 whose sole purpose is as a repository for excess
probability mass. LetBd−1 be the unit ball inRd−1, and letσBd−1 be this same ball scaled to have
radiusσ. The cylinderX0 stretches along thex1-axis; its cross-section isσBd−1 and its length is
4(c+ 1)σ for somec > 1 to be specified:X0 = [0, 4(c+ 1)σ]× σBd−1. Here is a picture of it:
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We will construct a family of densitiesΘ = {θi} onX , and then argue that any cluster tree algorithm
that is able to distinguish(σ, ǫ)-separated clusters must be able, when given samples from someθI ,
to determine the identity ofI. The sample complexity of this latter task can be lower-bounded using
Fano’s inequality (typically stated as in [2], but easily rewritten in the convenient form of [15], see
appendix): it isΩ((log |Θ|)/β), for β = maxi6=j K(θi, θj), whereK(·, ·) is KL divergence.

The familyΘ containsc− 1 densitiesθ1, . . . , θc−1, whereθi is defined as follows:

• Densityλ on [0, 4σi+σ]×σBd−1 and on[4σi+3σ, 4(c+1)σ]×σBd−1. Since the cross-
sectional area of the cylinder isvd−1σ

d−1, the total mass here isλvd−1σ
d(4(c+ 1)− 2).

• Densityλ(1− ǫ) on (4σi+ σ, 4σi+ 3σ)× σBd−1.

• Point masses1/(2c) at locations4σ, 8σ, . . . , 4cσ along thex1-axis (use arbitrarily narrow
spikes to avoid discontinuities).

• The remaining mass,1/2−λvd−1σ
d(4(c+1)−2ǫ), is placed onX1 in some fixed manner

(that does not vary between different densities inΘ).

Here is a sketch ofθi. The low-density region of width2σ is centered at4σi+ 2σ on thex1-axis.

point mass1/2c

densityλ(1− ǫ)

densityλ

2σ

For anyi 6= j, the densitiesθi andθj differ only on the cylindrical sections(4σi + σ, 4σi + 3σ)×
σBd−1 and(4σj+σ, 4σj+3σ)×σBd−1, which are disjoint and each have volume2vd−1σ

d. Thus

K(θi, θj) = 2vd−1σ
d

(
λ log

λ

λ(1− ǫ)
+ λ(1− ǫ) log

λ(1− ǫ)

λ

)

= 2vd−1σ
dλ(−ǫ log(1− ǫ)) ≤ 4

ln 2
vd−1σ

dλǫ2

(usingln(1− x) ≥ −2x for 0 < x ≤ 1/2). This is an upper bound on theβ in the Fano bound.

Now define the clusters and separators as follows: for each1 ≤ i ≤ c− 1,

• Ai is the line segment[σ, 4σi] along thex1-axis,

• A′
i is the line segment[4σ(i+ 1), 4(c+ 1)σ − σ] along thex1-axis, and

• Si = {4σi+ 2σ} × σBd−1 is the cross-section of the cylinder at location4σi+ 2σ.

ThusAi andA′
i are one-dimensional sets whileSi is a(d − 1)-dimensional set. It can be checked

thatAi andA′
i are(σ, ǫ)-separated bySi in densityθi.

With the various structures defined, what remains is to arguethat if an algorithm is given a sample
Xn from someθI (whereI is unknown), and is able to separateAI ∩Xn fromA′

I ∩Xn, then it can
effectively inferI. This has sample complexityΩ((log c)/β). Details are in the appendix.�

There remains a discrepancy of2d between the upper and lower bounds; it is an interesting open
problem to close this gap. Does the(α = 1, k ∼ d log n) setting (yet to be analyzed) do the job?
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5 Appendix: using a uniformly consistent density estimate

One way to build a cluster tree is to returnCfn , wherefn is a uniformly consistent density estimate.

Lemma 13 Suppose estimatorfn of densityf (on spaceX ) satisfies

sup
x∈X

|fn(x)− f(x)| ≤ ǫn.

Pick any two disjoint setsA,A′ ⊂ X and define

α = inf
x∈A∪A′

f(x)

β = sup
A

P
 A′

inf
x∈P

f(x)

If α− β > 2ǫn thenA,A′ lie entirely in disjoint connected components ofCfn(α− ǫn).

PROOF: A andA′ are each connected inCfn(α− ǫn). But there is no path fromA toA′ in Cfn(λ)
for λ > β + ǫn. �

The problem, however, is that computing the level sets offn is usually not an easy task. Hence we
adopt a different approach in this paper.

6 Appendix: single linkage

This procedure for building a hierarchical clustering takes as input a data setx1, . . . , xn ∈ R
d.

1. For each data pointxi, setr2(xi) = distance fromxi to its nearest neighbor.

2. Asr grows from0 to∞:

(a) Construct a graphGr with nodes{xi : r2(xi) ≤ r}.
Include edge(xi, xj) if ‖xi − xj‖ ≤ r.

(b) Let Ĉ(r) be the connected components ofGr.

7 Appendix: consistency

The following is a straightforward exercise in analysis.

Lemma 14 Suppose densityf : R
d → R is continuous and is zero outside a compact subset

X ⊂ R
d. Suppose further that for someλ, {x ∈ X : f(x) ≥ λ} has finitely many connected

components, among themA and A′. Then there existσ, ǫ > 0 such thatA and A′ are (σ, ǫ)-
separated.

PROOF: LetA1, A2, . . . , Ak be the connected components of{f ≥ λ}, with A = A1 andA′ = A2.

First, eachAi is closed and thus compact. To see this, pick anyx ∈ X \Ai. There must be somex′

on the shortest path fromx to Ai with f(x′) < λ (otherwisex ∈ Ai). By continuity off , there is
some ballB(x′, r) on whichf < λ; thus this ball doesn’t touchAi. ThenB(x, r) doesn’t touchAi.

Next, for anyi 6= j, define∆ij = infx∈Ai,y∈Aj
‖x − y‖ to be the distance betweenAi andAj .

We’ll see that∆ij > 0. Specifically, defineg : Ai × Aj → R by g(a, a′) = ‖a − a′‖. Sinceg has
compact domain, it attains its infimum for somea ∈ Ai, a

′ ∈ Aj . Thus∆ij = ‖a− a′‖ > 0.

Let∆ = mini6=j ∆ij > 0, and defineS to be the set of points at distance exactly∆/2 fromA:

S = {x ∈ X : inf
y∈A

‖x− y‖ = ∆/2}.

S separatesA from A′. Moreover, it is closed by continuity of‖ · ‖, and hence is compact. Define
λo = supx∈S f(x). SinceS is compact,f (restricted toS) is maximized at somexo ∈ S. Then
λo = f(xo) < λ.
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To finish up, setδ = (λ− λo)/3 > 0. By uniform continuity off , there is someσ > 0 such thatf
doesn’t change by more thanδ on balls of radiusσ. Thenf(x) ≤ λo + δ = λ− 2δ for x ∈ Sσ and
f(x) ≥ λ− δ for x ∈ Aσ ∪A′

σ.

ThusS is a(σ, δ/(λ− δ))-separator forA,A′. �

8 Appendix: proof of Lemma 7

We start with a standard generalization result due to Vapnikand Chervonenkis; the following version
is a paraphrase of Theorem 5.1 of [1].

Theorem 15 Let G be a class of functions fromX to {0, 1} with VC dimensiond < ∞, andP a
probability distribution onX . Let E denote expectation with respect toP. Supposen points are
drawn independently at random fromP; let En denote expectation with respect to this sample. Then
for anyδ > 0, with probability at least1− δ, the following holds for allg ∈ G:

−min(βn

√
Eng, β

2
n + βn

√
Eg) ≤ Eg − Eng ≤ min(β2

n + βn

√
Eng, βn

√
Eg),

whereβn =
√
(4/n)(d ln 2n+ ln(8/δ)).

By applying this bound to the classG of indicator functions over balls, we get the following:

Lemma 16 SupposeXn is a sample ofn points drawn independently at random from a distribution
f overX . For any setY ⊂ X , let fn(Y ) = |Xn ∩Y |/n. There is a universal constantCo > 0 such
that for anyδ > 0, with probability at least1− δ, for any ballB ⊂ R

d,

f(B) ≥ Co

n

(
d log n+ log

1

δ

)
=⇒ fn(B) > 0

f(B) ≥ k

n
+

Co

n

(
d log n+ log

1

δ
+

√
k

(
d log n+ log

1

δ

))
=⇒ fn(B) ≥ k

n

f(B) <
k

n
− Co

n

(
d log n+ log

1

δ
+

√
k

(
d log n+ log

1

δ

))
=⇒ fn(B) <

k

n

PROOF: The boundf(B)− fn(B) ≤ βn

√
f(B) from Theorem 15 yields

f(B) > β2
n =⇒ fn(B) > 0.

For the second bound, we usef(B)− fn(B) ≤ β2
n + βn

√
fn(B). It follows that

f(B) ≥ k

n
+ β2

n + βn

√
k

n
=⇒ fn(B) ≥ k

n
.

For the last bound, we rearrangef(B)− fn(B) ≥ −(β2
n + βn

√
f(B)) to get

f(B) <
k

n
− β2

n − βn

√
k

n
=⇒ fn(B) <

k

n
.

�

Lemma 7 now follows immediately, by takingk ≥ d log n. Since the uniform convergence bounds
have error bars of magnitude(d log n)/n, it doesn’t make sense to takek any smaller than this.

9 Appendix: proof of Lemma 10

Consider anyx, x′ ∈ A ∩Xn. SinceA is connected, there is a pathP in A with x
P
 x′. Fix any

0 < γ < 1. Because the density ofA is lower bounded away from zero, it follows by a volume
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and packing-covering argument thatA, and thusP , can be covered by a finite number of balls of
diameterγr. Thus we can choose finitely many pointsz1, z2, . . . , zk ∈ P such thatx = z0, x′ = zk
and

‖zi+1 − zi‖ ≤ γr.

By Lemma 7, any ball centered inA with radius(α− γ)r/2 contains at least one data point if

vd

(
(α− γ)r

2

)d

λ ≥ Cδd log n

n
. (1)

Assume for the moment that this holds. Then, every ballB(zi, (α − γ)r/2) contains at least one
point; call itxi.

By the upper bound onr, each suchxi lies inAσ−r; therefore, by Lemma 8, thexi are all active in
Gr. Moreover, consecutive pointsxi are close together:

‖xi+1 − xi‖ ≤ ‖xi+1 − zi+1‖+ ‖zi+1 − zi‖+ ‖zi − xi‖ ≤ αr.

Therefore, all edges(xi, xi+1) exist inGr, wherebyx is connected tox′ in Gr.

All this assumes that equation (1) holds for someγ > 0. Takingγ → 0 gives the lemma.

10 Appendix: Fano’s inequality

Consider the following game played with a predefined, finite class of distributionsΘ = {θ1, . . . , θℓ},
defined on a common spaceX :

• Nature picksI ∈ {1, 2, . . . , ℓ}.

• Player is givenn i.i.d. samplesX1, . . . , Xn from θI .

• Player then guesses the identity ofI.

Fano’s inequality [2, 15] gives a lower bound on the number ofsamplesn needed to achieve a certain
success probability. It depends on how similar the distributionsθi are: the more similar, the more
samples are needed. Define

β =
1

ℓ2

ℓ∑

i,j=1

K(θi, θj)

whereK(·) is KL divergence. Thenn needs to beΩ((log ℓ)/β). Here’s the formal statement.

Theorem 17 (Fano) Letg : Xn → {1, 2, . . . , ℓ} denote Player’s computation. If Nature choosesI
uniformly at random from{1, 2, . . . , ℓ}, then for any0 < δ < 1,

n ≤ (1− δ)(log ℓ)− 1

β
=⇒ Pr(g(X1, . . . , Xn) 6= I) ≥ δ,

where the logarithm is base two.

11 Appendix: proof details for Theorem 12

Once the various structures are defined, the remainder of theproof is broken into two phases. The
first will establish that ifn is at least a small constant (say, 100), then it must be the case that
n = Ω(1/(vdσ

dλǫ2d1/2)). The second part of the proof will then extend this to show that if n is at
least this latter quantity, then in fact it must be even larger, the lower bound of the theorem statement.

To start with, choosec to be a small constant, such as 5. Then, even a small sampleXn is likely
to contain all of thec point masses on thex1-axis (each of which has mass1/2c). Suppose the
algorithm is promised in advance that the underlying density is one of thec − 1 choicesθI , and is
subsequently able (with probability at least1/2) to separateAI fromA′

I . To do this, it must connect
all the point masses withinAI , and all the point masses withinA′

I , and yet keep these two groups
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apart. In short, this algorithm must be able to determine (with probability at least1/2) the segment
(4σI + σ, 4σI + 3σ) of lower density, and hence the identity ofI.

We can thus apply Fano’s inequality to conclude that we need

n = Ω

(
log c

β

)
= Ω

(
1

vd−1σdλǫ2

)
= Ω

(
1

vdσdλǫ2d1/2

)

The last equality comes from the formulavd = πd/2/Γ((d/2)+ 1), whereuponvd−1 = O(vdd
1/2).

Now consider a larger value ofc:

c =

⌊
1

8vd−1σdλ
− 1

⌋
,

and apply the same construction. We have already established that we needn = Ω(c/ǫ2) samples,
so assumen is at least this large. Then, it is very likely that when the underlying density isθI , the
sampleXn will contain the four point masses at4σ, 4σI, 4σ(I + 1), and4(c+ 1)σ. Therefore, the
clustering algorithm must connect the point at4σ to that at4σI and the point at4σ(I + 1) to that at
4(c+1)σ, while keeping the two groups apart. Therefore, this algorithm can determineI. Applying
Fano’s inequality givesn = Ω((log c)/β), which is the bound in the theorem statement.

12 Appendix: better convergence rates in some instances

Our convergence rates (Theorem 6) contain a condition (*) for clusters of density≥ λ that are
(σ, ǫ)-separated:

λ ≥ 1

vd(σ/2)d
· k
n
·
(
1 +

ǫ

2

)
.

Paraphrased, this means that in order for such clusters to bedistinguished, it is sufficient that the
number of data points be at least

n ≥ d2d

vdσdλǫ2
,

ignoring logarithmic factors. There is a2d factor here that does not appear in the lower bound
(Theorem 12). Can this term be removed?

We now show that this term can be improved in two particular cases.

• When the separationǫ is not too small, in particular whenǫ > (9/10)d, the2d term can be
improved to(1 + 1/

√
2)d, which is roughly1.7d.

• If the densityf is Lipschitz with parameterℓ, that is, if

|f(x)− f(x′)| ≤ ℓ‖x− x′‖ for all x, x′ ∈ X ,

and if ǫ ≥ 3ℓσ/λ, then the2d term can be removed altogether.

12.1 Better rates when the separation is not too small

Theorem 18 Theorem 6 holds ifǫ >
(

7+4
√
2

16

)−d/2

, and if the condition (*) is replaced by:

λ := inf
x∈Aσ∪A′

σ

f(x) ≥ 1

vd(2σ/(α+ 2))d
· k
n
·
(
1 +

ǫ

2

)
.

The lower bound onǫ is at most(9/10)d.
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Figure 5: BallsB(0, σ) andB(y, r), where‖y‖ = q.

Analysis overview

The main idea is to bound the volumeB(x, r) \Aσ for a pointx that lies inAσ but not inAσ−r. If
this volume is small, then most ofB(x, r) is insideAσ, and thus has densityλ or more. To establish
this bound, we begin with some notation.

Definition 19 For r, q ≤ σ, definev(q, r, σ) as the volume of the regionB(y, r) \ B(0, σ), for any
y such that||y|| = q. (By symmetry this volume is the same for all suchy.) For an illustration, see
Figure 12.1.

Lemma 20 Lety ∈ Aq andr, q ≤ σ. Thenvol(B(y, r) \Aσ) ≤ v(q, r, σ).

PROOF: As y ∈ Aq, there exists somey′ ∈ A such that||y − y′|| ≤ q. Let q′ = ||y − y′||. AsAσ

containsB(y′, σ),

v(q′, r, σ) = vol(B(y, r) \B(y′, σ)) ≥ vol(B(y, r) \Aσ)

The observation that forq′ ≤ q, v(q′, r, σ) ≤ v(q, r, σ) concludes the lemma.�

Lemma 21 Let r ≤ q = σ/(1 + 1/
√
2). Then,

v(q, r, σ) ≤ 1

2

(
7 + 4

√
2

16

)−d/2

vdr
d

PROOF: WLOG, suppose thaty lies along the first coordinate axis. Ifr ≤ σ − q, the sphere
B(0, σ) ⊇ B(y, r), and thusv(q, r, σ) = 0. Thus, for the rest of the proof, we assume thatr > σ−q.

LetH be the(d− 1)-dimensional hyperplane that contains the intersection ofthe spherical surfaces
of B(0, σ) andB(y, r) – see Figure 12.1. By spherical symmetry,H is orthogonal to the first
coordinate axis. Leth be the distance betweeny andH, and letθ = arccos(h/r).

Any x ∈ B(y, r) \ B(0, σ) also lies to the right of the hyperplaneH in Figure 12.1.v(q, r, σ) is
thus at most the volume of a spherical cap ofB(y, r) that subtends an angleθ at the centery. If
0 < θ < π/2, that is, if the centery lies to the left ofH, then we can upper-bound this volume by that
of the smallest enclosing hemisphere. A simple calculationshows that the latter is(1/2)vdrd sin

d θ.
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We first calculatesin θ for r = q. Let x1 be the first coordinate of any point on the intersection of
the spherical surfaces ofB(0, σ) andB(y, r). Then,x2

1 − (x1 − q)2 = σ2 − r2. Plugging in the

values ofq andr in terms ofσ, x1 = σ2/2q = (1+
√
2)σ

2
√
2

, which we verify is to the left ofH.

Simple algebra now shows thatsin θ =

√
7+4

√
2

4 , from whichv(q, r, σ) ≤ 1
2

(
7+4

√
2

16

)−d/2

vdr
d.

For smallerr, observe that for a fixedq, the distanceh increases with decreasingr, along with
decreasingθ. As the volume of the spherical cap also decreases with decreasingθ, the lemma
follows.�

Analysis: separation

Lemma 22 Letα ≥
√
2, and letq = σ/(1 + 1/

√
2). Pick0 < r < 2σ/(α+ 2) such that

(vdr
d − v(q, r, σ))λ ≥ k

n
+

Cδ

n

√
kd log n

vdr
dλ(1− ǫ) <

k

n
− Cδ

n

√
kd log n

Then with probability> 1− δ:

1. Gr contains all points in(Aq ∪A′
q) ∩Xn and no points inSσ−r ∩Xn.

2. A ∩Xn is disconnected fromA′ ∩Xn in Gr.

PROOF: Notice first of all thatr ≤ q. From Lemma 20, for any pointx ∈ (Aq ∪A′
q), v(q, r, σ) is at

most the volume ofB(x, r) that lies outsideAσ ∪A′
σ; therefore,f(B(x, r)) ≥ (vdr

d−v(q, r, σ))λ,
and thus, by Lemma 7,x has at leastk neighbors within radiusr. Likewise, any pointx ∈ Sσ−r

hasf(B(x, r)) < vdr
dλ(1 − ǫ); and thus, by Lemma 7, has strictly fewer thank neighbors within

distancer. This establishes (1).

For (2), since points inSσ−r are absent fromGr, any path fromA to A′ in that graph must have an
edge acrossSσ−r. But any such edge has length at least2(σ − r) > αr and is thus not inGr. �

Definition 23 Definer(λ) to be the value ofr for which(vdrd− v(q, r, σ))λ = k
n + Cδ

n

√
kd log n.

To satisfy the conditions of Lemma 22, recall that ifǫ >
(

7+4
√
2

16

)−d/2

, it suffices to takek ≥
16C2

δ (d/ǫ
2) log n; this is what we use.

Analysis: connectedness

To show that points inA (and similarlyA′) are connected inGr(λ), we observe that as allx ∈ Aq ∪
A′

q are active, the arguments of Theorem 11 follow exactly as before, providedr ≤ σ/(1 + 1/
√
2).

Sinceα ≥
√
2, this condition holds for anyr ≤ 2σ/(α+ 2).

To complete the proof of Theorem 18, takek = 16C2
δ (d/ǫ

2) log n, which satisfies the requirements
of Lemma 22 as well as those of Theorem 11, usingζ = 2ǫ2. The relationship that definesr(λ)
(Definition 23) then translates into

(vdr
d − v(q, r, σ))λ =

k

n

(
1 +

ǫ

2

)
.

This shows that clusters at density levelλ emerge when the growing radiusr of the cluster tree
algorithm reaches roughly(k/(λvdn))1/d. In order for(σ, ǫ)-separated clusters to be distinguished,
we need this radius to be at most2σ/(2 + α); this is what yields the final lower bound onλ.
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12.2 Better rates when the density is Lipschitz

In this section, we establish an even sharper upper bound on the rate of convergence, provided the
densityf is smooth. In particular, we assume thatf is Lipschitz, with a Lipschitz constantℓ.

Theorem 24 Theorem 6 holds if the densityf has Lipschitz constantℓ and if the condition (*) is
replaced by:

λ := inf
x∈Aσ∪A′

σ

f(x) ≥ 1

vdσ̃d
· k
n
·
(
1 +

ǫ

2

)

whereσ̃ = min(σ, λǫ
3ℓ ).

As usual, for the analysis we first treat separation, then connectedness.

Lemma 25 Pick0 < r ≤ σ̃, α < 2, such that

vdr
d(λ− σ̃ℓ) ≥ k

n
+

Cδ

n

√
kd log n

vdr
d(λ(1− ǫ) + σ̃ℓ) <

k

n
− Cδ

n

√
kd log n

(recall thatvd is the volume of the unit ball inRd). Then with probability> 1− δ:

1. Gr contains all points in(Aσ ∪A′
σ) ∩Xn and no points inSσ ∩Xn.

2. A ∩Xn is disconnected fromA′ ∩Xn in Gr.

PROOF: For (1), if r ≤ σ̃, for any pointx ∈ (Aσ ∪ A′
σ), the density in anyy ∈ B(x, r) is at least

λ − σ̃ℓ. Therefore,f(B(x, r)) ≥ vdr
d(λ − σ̃ℓ); and thus, by Lemma 7, has at leastk neighbors

within radiusr. Likewise, forr ≤ σ̃, any pointx ∈ Sσ hasf(B(x, r)) < vdr
d(λ(1− ǫ) + σ̃ℓ); and

thus, by Lemma 7, has strictly fewer thank neighbors within distancer.

For (2), since points inSσ are absent fromGr, any path fromA to A′ in that graph must have an
edge acrossSσ. But any such edge has length at least2σ > αr (asr ≤ σ̃ ≤ σ, andα ≤ 2) and is
thus not inGr. �

Definition 26 Definer(λ) to be the value ofr for whichvdrd(λ− σ̃ℓ) = k
n + Cδ

n

√
kd log n.

As σ̃ ≤ λǫ/3ℓ, to satisfy the conditions of Lemma 25, it suffices to takek ≥ 36C2
δ (d/ǫ

2) log n; this
is what we use.

We now need to show that points inA (and similarlyA′) are connected inGr(λ). To show this, note
that under the conditions onℓ the proof of Theorem 11 applies forr = σ̃, andα =

√
2(1 + ζ√

d
).

To complete the proof of Theorem 24, takek = 36C2
δ (d/ǫ

2) log n, which satisfies the requirements
of Lemma 25 as well as those of Theorem 11, usingζ = 2ǫ2. The relationship that definesr(λ)
(Definition 26) then translates into

vdr
d(λ− σ̃ℓ) =

k

n

(
1 +

ǫ

2

)
.

This shows that clusters at density levelλ emerge when the growing radiusr of the cluster tree
algorithm reaches roughly(k/(λvdn))1/d. In order for(σ, ǫ)-separated clusters to be distinguished,
we need this radius to be at mostσ̃; this is what yields the final lower bound onλ.
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