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A Optimal stimulation parameter selection

A.1 Method

The data used in this analysis is from a single chronically implanted rat with two 16-channel tungsten
micro-wire arrays (Tucker Davis). Neuronal activity was recorded from arrays in S1 and in ventral
posterolateral nucleus (VPL) of the thalamus using the Plexon Multichannel Acquisition Processor.
Action potentials were detected using a constant thresholdand were sorted by a semi-automated
clustering procedure (SortClient) using the first 3 principal components of the detected waveforms.

Prior to each recording session, anesthesia was induced by isofluorane followed by a Nembutal
injection and maintained with isofluorane. Neurons with receptive fields in the arm/hand region were
identified audibly and by delivering a short thwack using a mechanical tactor that lightly contacted
the first digit on the rats right paw at 2Hz for 120s, yielding 240 presentations.
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Duration: varies in discrete steps 
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Figure 1: Waveforms for stimulating channels.
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Bipolar microstimulation (AM Systems Model 2200 Isolator)was then applied to two adjacent elec-
trodes that corresponded to neurons with strong activity inresponse to the tactile stimulation. Each
stimulation consisted of a biphasic squared pulse, see Figure 1. The pulse duration and current
amplitude was varied, but the stimulations were always at 500 ms apart. During each session, 19
distinct pairs of pulse duration and current amplitude wereapplied, with 140 responses from each
pair randomly permuted throughout the recording. Thus the goal was to compare the 240 natural
touch responses to the 140 microstimulation responses fromeach parameter variation.

In order to compare the temporal response, the tactile and electrical stimulation needed to be aligned.
A difficulty with microstimulation is that the produced artifact prevents recording for nearly 6 ms on
the entire array. The corresponding initial 6 ms response oneach trial to tactile touch was removed.
A window of 40 ms was used for comparison. The firing rate returned to an equilibrium level by the
end of the window as in figure 2.

Tactile (25uA,175us) (25uA,200us) (25uA,225us) (25uA,250us)
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(100uA,125us) (100uA,150us) (100uA,175us) (100uA,200us) (100uA,225us)

Figure 2: Response pattern from tactile input and all electrical stimulation parameter settings that
were scanned. Time is shown on the x-axis between 0 and 40ms. The y-axis shows trials sorted by
number of spikes than first spike time. This plotting shows the count distribution and spike timing
for all realizations.

B Extra hypothesis testing results

B.1 Poisson process

Poisson process is the simplest, and perhaps, the most widely used point process model. We test
if the proposed methods can detect difference in the rate profile while maintaining the average rate
constant. In Poisson process, the count distribution has variance equal to the mean rate, hence for
higher rates the data becomes sparsely spread among the dimensionsΩn. For this example of rate
3, 90% of the count distribution is concentrated in the rangeof one to seven spikes.

Since the rate function fully describes this process, the performance of the rate based statisticλL2 is
the best in this case (see Figure 3). Also since the count distribution forH0 andH1 are identically
Poisson distributed, Wilcoxon test (denotedN ) fails to detect the difference. K-S and C-M based
divergences performs similarly, yet it is interesting to note that C-M is consistently better than the
K-S divergence.
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Figure 3: Poisson process. (Left) Spike trains from the nulland alternate hypothesis. The rate
function is constant during each 100 ms interval. The rate ofH0 changes from 20 to 10 spk/s, and
for H1 it changes from 10 to 20 spk/s. (Right) Comparison of the power of each method. The
Wilcoxon test on mean count (labeled withN ) stays around the threshold level (0.05). All other
methods are empirically consistent for this example. The error bars are standard deviation over 10
Monte Carlo runs.
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Figure 4: Izhikevich neuron model. (Left) example spike trains from the model for the baseline
current (top) and with increased gain (middle). The bottom trace is the waveform of the injected
current. (Right) Comparison of the power of each method for different input scaling. TTFS is the
K-S statistic for the jitter distribution of the time to firstspike.

B.2 Neuron model

We investigate the sensitivity of the proposed methods in a neurophysiological scenario. We simu-
lated a repeated injection of current to a neuron model, and observed the output spike train pattern.
By varying the gain factor of input, we investigate the sensitivity of various statistics to a realistic
statistical change. Izhikevich’s simplified neuron model for Class 2 neuron is stimulated with noisy
current injection [1, Ch 8]. The dynamics of the model is fully described by the following equations,

v̇ = 0.04(v + 42)(v + 82) if v ≥ 30, then

u̇ = 0.2(0.26v − u) v ← −65
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where spike times are recorded wheneverv is reset. Frozen noise is generated from white Gaussian
wave form with duration 40 ms. The noise is injected to the neuron model with additional noise
current that is generated for each trial. The neuron model issensitive to certain feature of the
noise [2], hence precisely timed action potentials are observed (see Figure 4). When the frozen
noise was scaled up, the action potentials generally reduced their variance and fired in earlier time
on average (see Figure 4).

The input current is adjusted such that 2 action potentials are generated on average. The sample size
is 30 spike trains for each condition. The C-M and K-S measures both perform at least as good as
the best rate based measure. Additionally, a K-S test on the jitter distribution to the first event (time
to first spike), ignoring the second spike timing, is compared and shown to be slightly worse than
the proposed method.

B.3 Serial correlation model
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Figure 5: Renewal process with (H0) or without serial correlation (H1). (Left) Spike trains from the
null and alternate hypothesis. (Right) Comparison of the power of each method. The error bars are
standard deviation over 10 Monte Carlo runs.

Serial correlation in point process is defined by the autocovariance of the intervals (time between
spikes). Due to internal dynamics of neurons, the spike trains can have serial correlation [3]. We
simulated a renewal process without serial correlation anda point process with same marginal inter-
val distribution but with a non-zero serial correlation [4]. We restrict our problem to two intervals
only, where each interval distribution is a convolution of two uniform distributions.

It turns out this problem is quite difficult and hundreds of samples are needed to discriminate them
(see Figure 5). Both K-S and C-M type tests perform equally well, while the Wilcoxon test fails to
differentiate between the two point processes. An optimized kernel size for the rate function statistic
outperforms both K-S and C-M type test.
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