This suplementary material provides the proofs for the NIPS’10 paper A POMDP Extension with
Belief-dependent Rewards.

A Proof of Theorem 3.1

Proof. Let us assume that V,,_1 () is a convex function, then we can show that V,, (b) is also convex
as follows. First, the value function in Eq. 1 can be expressed by parts as,

Va(b) = max [V;7(0)]
V) =>_V,eo(b),

o

p(b,a)
12|
»®°(b) = vPr(o|a, b)Vy—1(b"°).

vee(b) = 25 4 gt (b), and

Also, using the belief update, we can express b®° = 7‘“1,):‘:];’“1 with P10 = O(s',a,0)T(s,a, s').
Therefore,
a,o a,o P b a,o
P*o(b) = || P" 'b”anfl(W) = yk(P*° - b)
([P0 - b1

with k(w) = ||Jwl|1 Vo1 (5—)-

llwllx

Here, x(w) is a convex function as it uses the perspective and linear-fractional convexity preserving
operations (see App. A.l1 for a stand-alone proof). Then, ¥ is also convex since convexity is
preserved under affine maps. Consequently, V,%:°, V¢ and V,, are convex because p and 1) are
convex.® Considering this last result is the inductive step, then V;,(b) is convex over b, because V} is
convex by definition. O

A.1 Stand-alone Proof of « Convexity

Lemma A.1. Lerw € R" and f : R™ — R a convex function. If k(w) = |w||1 f(7-5—), then k(w)

lwllx

is also a convex function.

Proof. As stated before, one can use the perspective and linear-fractional convexity preserving op-
erations to directly prove that s is convex. However, this can also be proved by only using the
convexity of f:

Ao + (1 - a)y)

ar+ (1 —a)y
= |lax+ (1 —a)y|1f
oz (= Gog 3oyl
al|z x (1 —a)llylx y
= [l + (1 = a)yll1 f( : +
loz+ (1 —ajyly |zl floz+ (1 —a)yl yl
allzs x (1 —a)llyllx y

IN

lloz + (1 — eyl (

X

= ak(z) + (1 — a)k(y).

laz + (1 —a)yli” Mzl ez + (1 =)yl lylh

>+afwMMﬂﬁt>

SConvex functions are closed under the sum and the max operators.
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B Proofs of Section 4

B.1 Proof of Lemma 4.1

Proof. The largest minimum distance between the boundaries of both simplices (see Fig. 1) is given
by the distance between their closest corners, i.e., ¢ = [(1 — (N — 1)e) — 1| + (N — 1)|¢| =
2(N — 1)e. This is the worst case scenario for ||’ — b”||;. Then, using the triangular inequality:
[Ib—=0"]1 < [|]b—=V]1+ |0 —b"||1, and picking the highest possible values for both distances, the
bound |[b — b”||; < 2(NV — 1)e + d5 holds. O

B.2 Proof of Lemma 4.2

Before proving Lemma 4.2, let us first give an equivalent result in the 1-dimensional case.

Lemma B.1. Let x,, 2, € R (z, < ), and 1 € (0,2 — ) be three scalars. Let also [ be a a-
Hoélder (with constant K ), bounded and convex function from [z, xp] to R, f being differentiable
everywhere on (4, xp). Then f is K,n™-Lipschitz on [z, + 1, xp — 7).

Proof. With any = € [z, + 1, ] we have (see Fig. 2 for an illustration):

f(@) > f'(xa +n) (By convexity of f)
> f(@a + 77; — f(za) (For the same reason)
> — |f(ma ""77) — f(xa)l

Ui
> —Kono ! (Because f is a-Holder).

Figure 2: Illustration for the proof of Lemma B.1

Similarly, for any = € [z,, 2, — 7] we have:

f'(@) < '@ —n)
f(xe) = flzo —n)

<
n

_ @)~ 1 =)
n

< Kon* .

Thus, for any @ € [x, + 0,2y — 1), |f'(2)| < Kon®1, so that f is K,n®~!-Lipschitz on [z, +
7, Ty — 77} U

We can now show how the above property extends to an n-simplex (using any norm).
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Proof of Lemma 4.2. Let b be a point in A, and let u be a unit vector parallel to the hyperplane
containing A. As shown on Fig. 3, the line going through b and directed by u intersects A on the
closed segment S, = [b + z,u,b + zpu] (r, < 0 < xp). We can thus define a function g,, from
[q, 2p] to R such that gy : © — f(b+ zu). gy is then a a-Holder (with same constant), bounded
and convex function from [z,, z] to R, gy, being differentiable everywhere on (x,, x).

T b+ apu

Figure 3: Illustration for the proof of Lemma 4.2

Let us note that the shortest distance (in any norm) between A, and bd(A) (the boundary of A) is
lower bounded by 7.” The intersection of A, with Sy is thus a segment S}, C [b + (x4 + n)u, b+
(xp — n)u). We can therefore apply Lemma B.1 to gy in [z, + 1, 2, — 7], what tells us that the
derivative of gy, at point O (and therefore the directional derivative of f at b along u) is bounded (in
absolute value) by K,n®~'. This property holding for any u, we have:

Vb e Ay, VIO < Kan™'.
O

The above lemmas naturally extend to the case where f is piecewise differentiable. Please note
that the norm of the gradient of Lemma 4.2 is defined as norm-1 for the uses of this paper, but any
p-norm can be used as stated in the proof.

B.3 Proof of Theorem 4.3

Proof. Letus pick b = argmax, A €5(z), the point where the approximation wp presents the worst
error. This value can be bounded as follows:

ep(b) < p(b) — wp=(b) (By Eq. 5 and Convexity)
< p(b) — wy (b) (b" € B makes a worse error)
= p(b) — p(b") + (b —b) - Vp(b") (By definition of w)
< p(b) — p(")| +|(d" —b) - Vp((")] (By triangular inequality)
< Kuo|lb=b"||¢ + (1" = b) - Vp(b'")] (By a-Holder condition)
< Kallb = V'8 + V00" o6 - bl (By Holder inequality)
< Koo = 0"||§ 4+ [[Vp(d")||1]]6" — b]]1 (By norm equivalence)
< Kallb=b"|1F + Kan® 0" = blly (By Lemma 4.2)
< Ko(2WN = 1) +65)* + Kan® (2N = 1)e + 65) (By Lemma 4.1)
=Ko (2W —1)e+065)* + (6 — 05)* 1 (2(N —1)e +5))  (By definition of 1)

"In p-norm, the distance between A, and bd(A) is the distance between the points (1, =2, ..., 2=7) and

(0, 55 i) e (A0, bd(A)) = (7 + (n = 1) 7%555) P = n(1 + =h7=r) /" = 1.
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This last result is a generic bound that depends on the choice of €, with e € (05, %] If we define €
as a linear function of 63, € = AJp, then the generic bound can be written as,

en(h) < Ko [N — DA+ D™ + (A= D 2N — DA +1)] 6% = €55 6)

with A € (1, 515 O
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