
This suplementary material provides the proofs for the NIPS’10 paper A POMDP Extension with
Belief-dependent Rewards.

A Proof of Theorem 3.1

Proof. Let us assume that Vn−1(b) is a convex function, then we can show that Vn(b) is also convex
as follows. First, the value function in Eq. 1 can be expressed by parts as,

Vn(b) = max
a

[V a
n (b)] ,

V a
n (b) =

∑

o

V a,o
n (b),

V a,o
n (b) =

ρ(b, a)

|Ω|
+ ψa,o(b), and

ψa,o(b) = γPr(o|a, b)Vn−1(b
a,o).

Also, using the belief update, we can express ba,o = Pa,o·b
‖Pa,o·b‖1

with P
a,o
s,s′ = O(s′, a, o)T (s, a, s′).

Therefore,

ψa,o(b) = γ‖P a,o · b‖1Vn−1(
P a,o · b

‖P a,o · b‖1
) = γκ(P a,o · b)

with κ(w) = ‖w‖1Vn−1(
w

‖w‖1

).

Here, κ(w) is a convex function as it uses the perspective and linear-fractional convexity preserving
operations (see App. A.1 for a stand-alone proof). Then, ψa,o is also convex since convexity is
preserved under affine maps. Consequently, V a,o

n , V a
n and Vn are convex because ρ and ψa,o are

convex.6 Considering this last result is the inductive step, then Vn(b) is convex over b, because V0 is
convex by definition.

A.1 Stand-alone Proof of κ Convexity

Lemma A.1. Let w ∈ R
n and f : Rn 7→ R a convex function. If κ(w) = ‖w‖1f(

w
‖w‖1

), then κ(w)

is also a convex function.

Proof. As stated before, one can use the perspective and linear-fractional convexity preserving op-
erations to directly prove that κ is convex. However, this can also be proved by only using the
convexity of f :

κ(αx+ (1− α)y)

= ‖αx+ (1− α)y‖1f(
αx+ (1− α)y

‖αx+ (1− α)y‖1
)

= ‖αx+ (1− α)y‖1f(
α‖x‖1

‖αx+ (1− α)y‖1
·

x

‖x‖1
+

(1− α)‖y‖1
‖αx+ (1− α)y‖1

·
y

‖y‖1
)

≤ ‖αx+ (1− α)y‖1(
α‖x‖1

‖αx+ (1− α)y‖1
f(

x

‖x‖1
) +

(1− α)‖y‖1
‖αx+ (1− α)y‖1

f(
y

‖y‖1
))

= α‖x‖1f(
x

‖x‖1
) + (1− α)‖y‖1f(

y

‖y‖1
)

= ακ(x) + (1− α)κ(y).

6Convex functions are closed under the sum and the max operators.
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B Proofs of Section 4

B.1 Proof of Lemma 4.1

Proof. The largest minimum distance between the boundaries of both simplices (see Fig. 1) is given
by the distance between their closest corners, i.e., ε′ = |(1 − (N − 1)ε) − 1| + (N − 1)|ε| =
2(N − 1)ε. This is the worst case scenario for ‖b′ − b′′‖1. Then, using the triangular inequality:
‖b− b′′‖1 ≤ ‖b− b′‖1 + ‖b′ − b′′‖1, and picking the highest possible values for both distances, the
bound ‖b− b′′‖1 ≤ 2(N − 1)ε+ δB holds.

B.2 Proof of Lemma 4.2

Before proving Lemma 4.2, let us first give an equivalent result in the 1-dimensional case.

Lemma B.1. Let xa, xb ∈ R (xa < xb), and η ∈ (0, xb − xa) be three scalars. Let also f be a α-
Hölder (with constant Kα), bounded and convex function from [xa, xb] to R, f being differentiable
everywhere on (xa, xb). Then f is Kαη

α-Lipschitz on [xa + η, xb − η].

Proof. With any x ∈ [xa + η, xb] we have (see Fig. 2 for an illustration):

f ′(x) ≥ f ′(xa + η) (By convexity of f )

≥
f(xa + η)− f(xa)

η
(For the same reason)

≥ −
|f(xa + η)− f(xa)|

η

≥ −Kαη
α−1 (Because f is α-Hölder).

xxa xb

ηη f ′(x)

f ′(xa + η)

Figure 2: Illustration for the proof of Lemma B.1

Similarly, for any x ∈ [xa, xb − η] we have:

f ′(x) ≤ f ′(xb − η)

≤
f(xb)− f(xb − η)

η

≤
|f(xb)− f(xb − η)|

η

≤ Kαη
α−1.

Thus, for any x ∈ [xa + η, xb − η], |f ′(x)| ≤ Kαη
α−1, so that f is Kαη

α−1-Lipschitz on [xa +
η, xb − η].

We can now show how the above property extends to an n-simplex (using any norm).
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Proof of Lemma 4.2. Let b be a point in ∆η and let u be a unit vector parallel to the hyperplane
containing ∆. As shown on Fig. 3, the line going through b and directed by u intersects ∆ on the
closed segment Su = [b + xau, b + xbu] (xa < 0 < xb). We can thus define a function gu from
[xa, xb] to R such that gu : x 7→ f(b + xu). gu is then a α-Hölder (with same constant), bounded
and convex function from [xa, xb] to R, gu being differentiable everywhere on (xa, xb).

∆

∆η

b

u

b+ xau

b+ xbu

η

η

η

Figure 3: Illustration for the proof of Lemma 4.2

Let us note that the shortest distance (in any norm) between ∆η and bd(∆) (the boundary of ∆) is

lower bounded by η.7 The intersection of ∆η with Su is thus a segment S′
u
⊆ [b + (xa + η)u, b +

(xb − η)u]. We can therefore apply Lemma B.1 to gu in [xa + η, xb − η], what tells us that the
derivative of gu at point 0 (and therefore the directional derivative of f at b along u) is bounded (in
absolute value) by Kαη

α−1. This property holding for any u, we have:

∀b ∈ ∆η, ‖∇f(b)‖ ≤ Kαη
α−1.

The above lemmas naturally extend to the case where f is piecewise differentiable. Please note
that the norm of the gradient of Lemma 4.2 is defined as norm-1 for the uses of this paper, but any
p-norm can be used as stated in the proof.

B.3 Proof of Theorem 4.3

Proof. Let us pick b = argmaxx∈∆ ǫB(x), the point where the approximation ωB presents the worst
error. This value can be bounded as follows:

ǫB(b) ≤ ρ(b)− ωb∗(b) (By Eq. 5 and Convexity)

≤ ρ(b)− ωb′′(b) (b′′ ∈ B makes a worse error)

= ρ(b)− ρ(b′′) + (b′′ − b) · ∇ρ(b′′) (By definition of ω)

≤ |ρ(b)− ρ(b′′)|+ |(b′′ − b) · ∇ρ(b′′)| (By triangular inequality)

≤ Kα‖b− b′′‖α1 + |(b′′ − b) · ∇ρ(b′′)| (By α-Hölder condition)

≤ Kα‖b− b′′‖α1 + ‖∇ρ(b′′)‖∞‖b′′ − b‖1 (By Hölder inequality)

≤ Kα‖b− b′′‖α1 + ‖∇ρ(b′′)‖1‖b
′′ − b‖1 (By norm equivalence)

≤ Kα‖b− b′′‖α1 +Kαη
α−1‖b′′ − b‖1 (By Lemma 4.2)

≤ Kα(2(N − 1)ε+ δB)
α +Kαη

α−1(2(N − 1)ε+ δB) (By Lemma 4.1)

= Kα((2(N − 1)ε+ δB)
α + (ε− δB)

α−1(2(N − 1)ε+ δB)) (By definition of η)

7In p-norm, the distance between ∆η and bd(∆) is the distance between the points (η, 1−η
n−1

, . . . , 1−η
n−1

) and

(0, 1
n−1

, . . . , 1
n−1

), i.e., d(∆η, bd(∆)) = (ηp + (n− 1) ηp

(n−1)p
)1/p = η(1 + 1

(n−1)p−1 )
1/p

≥ η.
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This last result is a generic bound that depends on the choice of ε, with ε ∈ (δB ,
1

N ]. If we define ε
as a linear function of δB , ε = λδB , then the generic bound can be written as,

ǫB(b) ≤ Kα

[

(2(N − 1)λ+ 1)α + (λ− 1)α−1(2(N − 1)λ+ 1)
]

δαB = CδαB (6)

with λ ∈ (1, 1

δBN ].
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