
A Generalization bounds for unbounded losses

When the class of functions is not bounded, a single function can take arbitrarily large values with
arbitrarily small probabilities. This is the main issue for deriving uniform convergence bounds for
unbounded losses. This problem can be avoided either by assuming the existence of an envelope,
that is a single non-negative function with a finite expectation lying above the absolute value of the
loss of every function in the hypothesis set [12, 21, 13, 22, 15], or by assuming that some moment
of the function losses is bounded [26, 27]. Our example in the simple case of Gaussians where
the function w is exponential shows that no envelope function would be suitable for the problem
of importance weighting. Thus, in view of the critical role played by the second moment of the
importance weight, we have chosen to favor the assumption that the second moment is bounded, as
in that example. A similar analysis can be given for other moments.

Here, we give two-sided generalization bounds for unbounded losses with finite second moments.
The one-sided version of our bounds coincides with that of [26, 27] modulo a constant factor of

√
2,

but the proofs given by Vapnik in both books seem to be incorrect.1 The core component of our
proof is based on a different technique, which is simpler and easy to check.

In what follows, we use the notation P̂r to denote the empirical distribution based on a finite sample
of sizem, and Ê to denote the expectation based on P̂r. The following theorem reduces the problem
of bounding suph∈H(E[Lh]− Ê[Lh])/

√
E[L2

h] to that of a standard relative deviation bound for
classification.
Theorem 5. For any loss function L (not necessarily bounded) and hypothesis set H such that
0<E[L2

h]<+∞ for all h∈H , the following two inequalities hold:

Pr

[
sup
h∈H

E[Lh] − Ê[Lh]
√

E[L2
h]

> ε

√
2 + log

1

ε

]
≤ Pr

[
sup

h∈H,t∈R

Pr[Lh > t] − P̂r[Lh > t]
√

Pr[Lh > t]
> ε

]
.

Pr

[
sup
h∈H

Ê[Lh] − E[Lh]
√

Ê[L2
h]

> ε

√
2 + log

1

ε

]
≤ Pr

[
sup

h∈H,t∈R

P̂r[Lh > t] − Pr[Lh > t]
√

P̂r[Lh > t]
> ε

]
.

Proof. We prove the first statement. The second statement can be shown in a very similar way.

Fix ε>0 and assume that for any h ∈ H and t≥0, the following holds:

Pr[Lh > t] − P̂r[Lh > t]
√

Pr[Lh > t]
≤ ε. (12)

We show that this implies that for any h ∈ H , E[Lh]−bE[Lh]√
E[L2

h]
≤ ε

√
2 + log 1

ε . By the properties of the
Lebesgue integral, we can write

E[Lh] =

∫ +∞

0
Pr[Lh > t] dt and Ê[Lh] =

∫ +∞

0
P̂r[Lh > t] dt,

and similarly,

E[L2
h] =

∫ +∞

0
Pr[L2

h > t] dt =

∫ +∞

0
2t Pr[Lh > t] dt.

In what follows, we use the shorter notation I = E[L2
h]. Let t1 =

√
I
2

1
ε . To bound E[Lh] − Ê[Lh],

we simply bound Pr[Lh > t] − P̂r[Lh > t] by Pr[Lh > t] for large values of t, that is t > t1, and
1In [26][p.204-206], statement (5.37) cannot be derived from assumption (5.35), contrarily to what is

claimed by the author, and in general does not hold: the first integral in (5.37) is restricted to a sub-domain
and is thus smaller than the integral of (5.35). Furthermore, the main statement claimed in Section (5.6.2) is not
valid. In [27][p.200-202], the author invokes the Lagrange method to show the main inequality, but the proof
steps are not mathematically justified. Even with our best efforts, we could not justify some of the steps and
strongly believe the proof not to be correct. In particular, the way function z is concluded to be equal to one
over the first interval is suspicious and not based on a mathematical proof.

10



use inequality (12) for smaller values of t:

E[Lh] − Ê[Lh] =

∫ +∞

0
Pr[Lh > t] − P̂r[Lh > t] dt ≤

∫ t1

0
ε
√

Pr[Lh > t]dt +

∫ +∞

t1

Pr[Lh > t]dt.

For relatively small values of t, Pr[Lh > t] is close to one. Thus, if we define t0 by t0 =
√

I
2 , we

can write

E[Lh] − Ê[Lh] ≤
∫ t0

0
ε dt +

∫ t1

t0

ε
√

Pr[Lh > t]dt +

∫ +∞

t1

Pr[Lh > t]dt =

∫ +∞

0
f(t)g(t) dt,

with

f(t) =






(2I)1/4 ε if 0 ≤ t ≤ t0√
2t Pr[Lh > t] ε if t0 ≤ t ≤ t1√
2t Pr[Lh > t] ε if t1 ≤ t.

g(t) =






1
(2I)1/4 if 0 ≤ t ≤ t0
1√
2t

if t0 ≤ t ≤ t1√
Pr[Lh>t]

2t
1
ε if t1 ≤ t.

Now, by the Cauchy-Schwarz inequality,

E[Lh] − Ê[Lh] ≤

√∫ +∞

0
f(t)2 dt

√∫ +∞

0
g(t)2 dt.

The first integral on the right-hand side can be bounded as follows:
∫ +∞

0
f(t)2 dt =

∫ t0

0

√
2Iε2 dt +

∫ +∞

t0

2t Pr[Lh > t]ε2 dt ≤
√

2I t0 ε2 + ε2I = 2ε2I,

and, since t1/t0 = 1/ε, the second one can be computed and bounded following
∫ +∞

0
g(t)2 dt =

∫ t0

0

dt√
2I

+

∫ t1

t0

dt

2t
+

∫ +∞

t1

Pr[Lh > t]

2tε2
dt

=
1

2
+

1

2
log

1

ε
+

∫ +∞

t1

2t Pr[Lh > t]

4t2ε2
dt

≤
1

2
+

1

2
log

1

ε
+

∫ +∞

t1

2t Pr[Lh > t]

4t21ε
2

dt ≤
1

2
+

1

2
log

1

ε
+

I

4t21ε
2

= 1 +
1

2
log

1

ε
.

Combining the bounds obtained for these integrals yields directly

E[Lh] − Ê[Lh] ≤

√

2ε2I

(
1 +

1

2
log

1

ε

)
= ε

√(
2 + log

1

ε

)√
I,

which concludes the proof of the theorem.

We will use the following relative deviation bound for classification of [1, 27]. Such relative devia-
tion results give sharper generalization bounds for binary classification.
Theorem 6 ([1]). Let L be the binary classification loss. Then, for any hypothesis set H of real-
valued functions, the following inequality holds:

Pr

[

sup
h∈H

R(h) − R̂(h)
√

R(h)
> ε

]

≤ 4ΠH(2m) exp

(
−

mε2

4

)
,

where ΠH(m) is the value of the growth function (maximum number of classifications) for a sample
of size m, using the hypothesis set H .

It is not hard to show using the same proof as that of [1, 27] that a similar guarantee holds for the
left side: Pr[suph∈H

bR(h)−R(h)√
bR(h)

> ε] ≤ 4ΠH(2m) exp
(
−mε2

4

)
. Combining these results with

Theorem 5 yields directly the following.
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Theorem 7. LetH be a hypothesis set of real-valued functions andL a loss function (not necessarily
bounded) such that for all h ∈ H , 0 < E[L2

h(x)] < +∞. Then, the following holds:

Pr

[
sup
h∈H

E[Lh(x)] − Ê[Lh(x)]
√

E[L2
h(x)]

> ε

√
2 + log

1

ε

]
≤ 4ΠH(2m) exp

(
−

mε2

4

)
.

Pr

[
sup
h∈H

Ê[Lh(x)] − E[Lh(x)]
√

Ê[L2
h(x)]

> ε

√
2 + log

1

ε

]
≤ 4ΠH(2m) exp

(
−

mε2

4

)
.

Theorem 8. LetH be a hypothesis set of real-valued functions andL a loss function (not necessarily
bounded) such that for all h ∈ H , 0 < E[L2

h(x)] < +∞. Assume that that Pdim({Lh(x) : h ∈
H}) = d < ∞. Then, the following holds:

Pr

[
sup
h∈H

E[Lh(x)] − Ê[Lh(x)]
√

E[L2
h(x)]

> ε

√
2 + log

1

ε

]
≤ 4 exp

(
d log

2em

d
−

mε2

4

)
.

Proof. The results follows immediately by Sauer’s lemma and the fact that the VC dimension of the
family {sgn(Lh(x)−t) : h ∈ H, t ∈ R} is precisely the pseudo-dimension of {Lh(x) : h ∈ H}.

The following corollary gives a simpler form of this bound.
Corollary 1. Let H be a hypothesis set of real-valued functions and L a loss function (not neces-
sarily bounded) such that for all h ∈ H , 0<E[L2

h(x)]<+∞. Assume that that Pdim({Lh(x) : h∈
H})=d<∞. Then, the following holds:

Pr

[
sup
h∈H

E[Lh(x)] − Ê[Lh(x)]
√

E[L2
h(x)]

> ε

]
≤ 4 exp

(
d log

2em

d
−

mε8/3

45/3

)
.

Proof. It is not hard to show that 3/4=minβ{β : ∀ε∈ [0, 1], ε
√

1 + 1
2 log 1

ε ≤ eβ} by studying the

function ε (→ ε
√

1 + 1
2 log 1

ε − eβ . This, combined with Theorem 7, gives the result.

The following two-sided bound results directly from Corollary 1 and a similar bound for the other
side that can be derived in the same way from Theorem 7.
Corollary 2. Let H be a hypothesis set of real-valued functions and L a loss function (not neces-
sarily bounded) such that for all h ∈ H , 0<E[L2

h(x)]<+∞. Assume that that Pdim({Lh(x) : h∈
H}) = d <∞. Then, for any δ > 0, with probability at least 1 − δ, for any h ∈ H , the following
holds:

∣∣∣E[Lh(x)] − Ê[Lh(x)]
∣∣∣ ≤ 25/4 max

{√
E[L2

h(x)],
√

Ê[L2
h(x)]

}
3
8

√
d log 2me

d + log 8
δ

m
.

B General lower bound based on maximum variance

Variants of the following result are known in the folklore of the learning theory community. We give
a full proof below.
Theorem 9. Let G denote a family of functions taking values in [0, 1]. For g∈G, let σ2(g) denote
the variance of g and σ(G) = supg∈G σ(g). Assume that 1

m ≤ σ2(G) < +∞. Then, the following
inequality holds:

Pr

[

sup
g∈G

[∣∣ E[g] − Ê[g]
∣∣

σ(G)

]

≥
1

2
√

m

]

≥
2

412
, (13)

where the probability is taken over samples of size m.
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Proof. Fix ε∈ (0, 1). By definition of the supremum, there exists g ∈G with σ(g)≥ (1 − ε)σ(G).
Let Z = E[g]−bE[g]

σ(g) . By definition, E[Z2]= 1
m2 E[

∑m
i=1

(E[g]−g(xi))
2

σ2(g) ]= 1
m . Thus,

1

m
= E[Z2] = E[Z21Z∈[0,1/(2

√
m)]] + E[Z21Z∈[1/(2

√
m),u/(

√
m)]] + E[Z21Z≥u/(

√
m)]

≤
1

4m
+

u2

m
Pr[|Z| ≥ 1/(2

√
m)] + E[Z21Z>u/(

√
m)],

which gives
Pr[|Z| ≥ 1/(2

√
m)] ≥

3

4u2
−

m

u2
E[Z21Z>u/(

√
m)]. (14)

Now, by the property of the Lebesgue integral,

m E[Z21Z> u√
m

] =

∫ +∞

0
Pr[mZ21Z> u√

m
> t]dt =

∫ u2

0
Pr

[
Z >

u√
m

]
dt +

∫ +∞

u2

Pr

[
Z >

√
t

m

]
dt

= u2 Pr

[
Z >

√
u2

m

]
+

∫ +∞

u2

Pr

[
Z >

√
t

m

]
dt.

By Bernstein’s inequality,

Pr

[
Z >

√
t

m

]
= Pr[

∣∣E[g] − Ê[g]
∣∣ >

√
t

m
σ(g)] ≤ exp

[
−m t

m σ2(g)

2σ2(g) + 2/3
√

t
mσ(g)

]

.

Using the assumption 1/
√

m ≤ σ(g) gives

Pr

[
Z >

√
t

m

]
≤ exp

[
−tσ2(g)

2σ2(g) + 2/3
√

tσ2(g)

]
= exp

[
−t

2 + 2/3
√

t

]
≤ exp(−3/8

√
t).

Thus,

m E[Z21Z> u√
m

] ≤ u2e−3/8u +

∫ +∞

u2

e−3/8
√

tdt = u2e−3/8u +

∫ +∞

u
2te−3/8tdt.

An integration in parts leads to

m E[Z21Z> u√
m

] ≤ (u2 + 16/3u + 128/9) exp(−3/8u).

For u ≥ 41/2, (u2 + 16/3u + 128/9) exp(−3/8u) ≤ 1/4. Thus, by (14), for u ≥ 41/2,

Pr[|Z| ≥ 1/(2
√

m)] ≥
3

4u2
−

1

4u2
=

1

2u2
.

Thus, for all ε∈(0, 1),

Pr

[

sup
g∈G

[∣∣ E[g] − Ê[g]
∣∣

σ(G)

]

≥
1 − ε

2
√

m

]

≥
2

412
,

which concludes the proof.
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