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Abstract

This document contains detailed proofs of theorems statdéteimain paper enti-
tled Random Projection Trees Revisited

1 Proof of Theorem 4

Theorem 1 (Theorem 4 restated)There is a constant; with the following property. Suppose an
RPTREE-MAX is built using data se6 c R . Pick any cellC in the RPTREE-MAX; suppose
that.S N C has doubling dimensiofl d. Then for any > 2, with probability at leastt — 1/4 (over
the randomization in constructing the subtree rooted'atfor every descendaidt’ which is more
thancs - s - dlogd levels belowC, we have radiug”’) < radiug(C)/s.

Proof. Without loss of generality assume thais a power of2. We will prove the result by induc-
tion. Recall the following result.

Fact 2 (Implicit in Theorem 3 in [1]) There is a constant; with the following property. Suppose
an RPTREE-MAX is built using data ses ¢ R” . Pick any cellC in the RPTREE-MAX; suppose
that S N C has doubling dimensioq d. Then for anyy > 0, with probability at leastl — ¢ (over
the randomization in constructing the subtree rooted'atfor every descendaidt’ which is more
thanci dlogd + log(1/9) levels belowC', we have radiug”’) < radiugC')/2.

Fact 2 proves the base case f§ot 2. For the induction step, Idt(s) denote the number of levels it
takes to reduce the size by a factorsafith high confidence. Then we have
L(s) < L(s/2) + c1dlogd + L(s/2) +2 = 2L(s/2) + c1dlog d + 2

Solving the recurrence givds(s) = O (sdlogd) O

2 Proof of Lemma 6

Lemma 3 (Lemma 6 restated)Let B = B(z,d) be a ball contained inside aRPTREE cell of
radius A that contains a datasef of doubling dimensiod. Lets us say that a random split splits
this ball if the split separates the data sg¢into two parts. Then a random split of the cell spliés

with probability atmost%‘/g.

Proof. The RPTREE-MAX splits proceed by randomly projecting the data in a cell dhtoreal
line and then choosing a split point in an interval of leng®A /+/D. It is important to note that
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the random direction and the split point are chosen indeprethd Hence, suppose data inside the
ball B gets projected onto an intervBl of radiusr, then the probability of it getting split is atmost
/D /6A since the split point is chosen randomly in an interval ogkeri2A /+/D independently

of the projection. LefR; be the random variable that gives the radius of the inteBvatience the
probability of B getting split is the following
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We have the following result from [1]

Fact 4 (Lemma6 of [1]) P [RB \/_ (d+ln )] <n

Fix the valuel = 4—‘5\/2 (d 4+ In2). Using the fact that for any; Pr[Rp > t] < 1 and making the

change of variables= 2 (d +In %) we get

f

0o l

00 l 0
/PT[RB Zt]dt:/Pr[RB Zt]dt—i-/Pr[RB > fdt < /1dt—|—/ndt(n)
0 0 l 0 1

Simplifying the above expression, we get the split proligitib be atmost
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Now [ e *"dx = 1 [f e de — [ e””zd:c] < ¥z {1 -V1 —e*“ﬂ < YZe~* sincel —

v1—z < zfor0 <z < 1. Usingd > 1, we get the probability of the balb getting split to be

atmost2% [\/ (d+1n?2) +\/_] 3‘2/3. O

3 Proof of Lemma 7

Lemma5 (Lemma 7 restated)Let B, (x1, A/960sv/d) and By (2, A/960s+/d) be a pair of balls

with the centers separated by atledsts — A /960sv/d. Suppose these balls are contained in a ball
B(x, A) containing dataS of doubling dimensiod. Then a random split of the cell is a good split
with respect to this pair with probability atlea%.

Proof. The techniques used in the proof of this lemma are the santmas tised to prove a similar
result in [1]. We are giving a proof sketch here for completn We use the following two results
from [1]

Fact 6 (Lemma 5 of [1]) Fix anyz € R”. Pick a random vectot/ ~ N (0, (1/D)Ip). Then for
anya, (5 >0:

(a)P[|U~x|§a.%} S\/%,

() B[[U-a] > -



Fact 7 (Corollary 8 of [1]) Supposes C R” lies within ball B(x, A). Pick any0 < § < 2/¢”.

Let this set be projected randomly onto the real line. Let eisade byz, the projection ofr by S,
the projection of the se§. Then with probability atleast — ¢ over the choice of random projection

ontoR, mediar{ S} — :E’ < % 4/2In 2.

Projections of points, sets etc. are denoted with a tifdesign. Applying Fact 4 withy = 6% we

get that with probability> 1 — e% the ball B; gets projected to an interval of length atm%
centered af;. The same holds faB,. Applying Fact 6(a) withw = 252 gives ugz; — @] > 25\/_

with probability 1 — %. Furthermore an application of Fact 6(b) with= /2 1n 40 shows that
with probability atleasti — 54, |x1 — Z| < 3&. The same holds true faf, as well. Finally an

=
application of Fact 7 withh = shows that the median of the projected Sewill lie wrthrn a
distance3& \/_ of Z (i.e. the prorectlon of the center of the cell) with probabiatleastl —

Simple calculations show that the preceding guarantedy imgt with probability atleas% over the
choice of random projections, the projections of both tHislvéll lie within the mterval from which

a split point would be chosen. Further more there would bepaogatleasﬁ 230 75 between

the projections of the two balls. Hence, given that thesedga@nts take place, with probability

vD A
atIeast12A (25\/5 — 27 \/_) over the choice of the split point, the balls will get cleaséparated.

Note that this uses independence of the choice of projeatioithe choice of the split point. Thus
the probability of a good split is atlea§g;. O

4  Proof of Lemma 9

Lemma 8 (Lemma 9 restated)Consider a cellC' of radius A in the RPTREE-MAX containing
data of doubling dimensiod and fix a pair of ballsB; (21, A/960sv/d) and By (z2, A/960sv/d)
with the centers separated by atledsts — A/960sv/d. Letp§- denote the probability that a cell
levels belowC has a descendarjtlevels below itself that contains data points from both thksh

1\
Thenpg < (1 - @) Dy

Proof. We have the following expression fp§ :

py < PJsplitatlevel0 is a good split- 0 +
P [split at level0 is a bad split- 2p;_, +
P [split at level0 is a neutral spljt- pj,_;
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5 Proof of Lemma 11

Lemma 9 (Lemma 11 restated)There exists a constamt such that the probability of a ball of
radius R in a cell of radiusA getting split before it lands up in a cell of radius/2 is at most
cs Rdv/dlog d

DBIEERE,

Proof. The only bad event for us is the one in whighgets split before it gets separated from
all the B;’s. Call this eventE. Also, denote byE[i] the bad event thaB gets split for the first
time in the:" split and the preceding— 1 splits are incapable of separatiyfrom all the B;’s.
ThusP [E] < )" P[E[:]]. Since any given split is a useful split (i.e. separdiefsom a fixedB;)
i>0

with probability > 1%92 the probability that — 1 splits will fail to separate allB;s from theB
(while not splitting B) is at mostmin {1, (1- T;2)171 - N} whereN = d°@ is the number of
balls B;. Since all splits in an RPAEE-MAX are independent of each other, we h&&[i]] <

min {1, (1- r;2)i71 : N}-%. Letk be such thafl — ﬁ)k% < ;- Clearlyk = O (dlog d)

suffices. Thus we have

3RVd 1\ 3RV [ =1 1Y’
PE < — i 1,{1—-— N < 1 -1-—
Bl s —x—. mm{’< 192) }— A (Z +Z4< 192)
i>0 =1 i=1
which gives u® [E] = O (W) since the second summation is just a constant. O

6 Proof of Theorem 12

Theorem 10 (Theorem 12 restatedYhere exists a constaag such that with probability- 1 —1/4,
a given ball B of radius R will be completely inscribed in aRPTREE-MAX cell C' of radius no
more thancg - Rdv/dlog d.

Proof. Let A* = 4C5Rd\/Elogd andA,,.x be the radius of the entire dataset. Denote 1y} the
event thatB ends up unsplit in a cell of radk@g;&. The event we are interested inA§m| for

m = log £p2x. Note thatP [F[m]|F[m — 1] is exactlyP [E] whereE is the event described in
Lemma 11 for appropriately set value of radiNs Also P [F'[m]|—F[m — 1]] = 0. Thus we have

m—1 m—1 m—1
. . csRdv/dlogd ¢sRdv/dlogd
P(Flm]] = [[PIFli+1F[]= <1_W >1-) N
1=0 i=0 max i—0 max
m—1 m—1
csRdv/dlogd 1 1 1
= 1- it et S I R
Settingeg = 4c¢5 gives us the desired result. O

7 Proof of Theorem 14

Let us first recall a result about smooth manifolds being uggaove this result.

Fact 11 (Implicit in Lemma 5.3 of [2]) SupposeM is a Riemannian manifold with condition
numberr. For anyp € M andr < \/er,e < 7, let M’ = B(p,r) N M. LetT = T,(M) be the

tangent space at. Then for anye,y € M/, ||lz)(T) — yy(T)||*> > (1 — €)[|z — y]|%.

We will now prove the following result

Theorem 12 (Theorem 14 restated)Given a data seb C M where M is a d-dimensional Rie-
mannian manifold with condition numbey then for anye < i, S has local covariance dimension

(d,e, \/§T)




Proof. SupposeM’ = B(xg,r)NM forr = \/57 and we are given data points= {x1,...z,} C
M'’. Letq = argmin ||u — z|| be the closest point on the manifold to the mean. The smosshne
M

x€
properties ofM tell us that the vectofu — ¢) is perpendicular td; (M), thed-dimensional tangent
space ay (in fact any pointy at which the functiory : x € M — ||z — p| attains a local extrema
would also have the same property). This has interestingemprences - let be the projection map
ontoTy (M) i.e. f(v) = v (Ty(M)).

Thenf(u — q) = 0 since(u — q) L T,(M). This implies that for any vectar € R?, f(v — ) =
fw—q)+ flg—pn) = flv—q) = f(v) — f(g) sincef is a linear map, We now note that
mlnHM — z;|| < r. If this were not true then we would ha\E |l — ;|| > nr® whereas we know

thatz |l — ;|| < Z |lwo — 2;| < nr? since for any random variabl§ € R and fixedv € R?,

we havel [1X - v|| 2] > E[||X —E[X]]]%]. Since||x — z;|| < r for somexz; € M, we know, by
definition ofg, that||u — ¢|| < r as well.

We also have|u — zo|| < r (since the convex hull of the points is contained in the Bafind the
mean, being a convex combination of the points, is contaiméue hull) and|z; — x| < r for all
pointsz;. — qll < Il — @0l + w0 — pll + [l — gl < 3rand
conclude thaS C B(g,3r) N M = B(q,/er) N M which means we can apply Fact 11 between
the vectorse; andg.

LetT = T,(M) andq as chosen above. We have

Dl@—wy@IF = Y If@-wI*=>Ifz-al*=>_ /@) - f@|
zeS zeS zeS zeS
> > (1-9llz—ql*> 1= lla—pl”
zeS zeS

where the last inequality again uses the fact that for a nandriableX € R” and fixedv € RP,
E[IX —ol’] > E [I|IX - E[X]]]. O
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