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1 Kernel Distribution and Density Estimation
We briefly describe the standard non-parametric kernel density or Parzen window (Parzen, 1962)
method we use for estimating the univariate densities in our Copula Network construction. Let
x[1], . . . , x[M ] be i.i.d. samples of a random variable X . The kernel density approximation of its
probability density function is

f̂h(x) =
1

Mh

M∑
i=1

K

(
x− xi
h

)
,

whereK is some kernel function and h is a smoothing parameter called the bandwidth. Qualitatively,
the method approximates the distribution by placing small “bumps” (determined by the kernel) at
each data point. Thus, higher density values will result in regions where there is a concentration of
data samples. A histogram representation of a density, for example, can be thought of as placing a
uniform box at each data point whose width equals to the width of the histogram bin.

A common, mathematically convenient and smoother, choice forK is the standard Gaussian density
function

K

(
x− xi
h

)
=

1√
2π
e−

(x−xi)
2

2h2 .

In this case, the variance of the Kernel is controlled indirectly by the choice of the bandwidth pa-
rameter h. A common choice for h that works well in practice (and is optimal when X is known to
be normally distributed) is

h = σ̂ ×
[

4

3M

] 1
5

where σ̂ is the robust estimator for the standard deviation of X:

σ̂ = median (|xi −median ({xi})|) /0.6745.

For the distribution function, the procedure is similar with the standard normal cumulative distribu-
tion as the Kernel function.

In all the experiments considered in this work we use this simplest variant of a Gaussian Kernel
estimator for each univariate density and distribution. See, for example, Bowman & Azzalini (1997)
for further details and for more elaborate kernel based density estimation approaches.

2 Multivariate normal copula
The multivariate Gaussian copula is constructed directly via an inversion of the parameters on both
sides of Sklar’s theorem (Sklar, 1959):

C(u1, . . . , uN ) = ΦΣ(Φ−1(u1), . . . ,Φ−1(un))

where Φ is the standard normal cumulative distribution function and ΦΣ is the standard normal
cumulative distribution function with correlation matrix Σ.
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2.1 Multivariate Normal Copula Density

Using xi to denote Φ−1(ui) so that ui = Φ(xi), we have that ∂ui/∂xi = ϕ(xi) = ϕ(Φ−1(ui)),
with ϕ denoting the standard normal density. Using this we can readily compute the multivariate
Gaussian copula density

c(u1, . . . , uN ) =
∂C(u1, . . . , uN )

∂u1 . . . ∂uN

=
ϕΣ(Φ−1(u1), . . . ,Φ−1(un))∏n

i=1 ϕ(Φ−1(ui))

Now, since the marginal of a multivariate normal distribution is a normal distribution with an appro-
priately reduced correlation matrix, we have that

c(u2, . . . , uN )u1=1 =
ϕΣ−u1

(Φ−1(u2), . . . ,Φ−1(un))∏n
i=2 ϕ(Φ−1(ui))

where Σ−u1
is a reduced correlation matrix that results from removing the first row and column

from Σ.

2.2 Parameter Estimation

Estimation of Σ via a direct maximum likelihood approach can be difficult in high dimension.
However, a relationship between the correlation matrix and Kendall’s tau provides an alternative.
Kendall’s tau is a well known measure of concordance for bivariate random vectors (Kruskal, 1958)

ρτ (X,Y ) = E
[
sign

(
(X − X̃)(Y − Ỹ )

)]
where the pair (X̃, Ỹ ) has the same distribution as as (X,Y ). Remarkably, for elliptical copula
distributions (including the normal and student-t), if ρ denotes the copula correlation coefficient of
X and Y then

ρτ (X,Y ) =
2

π
arcsinρ

Using this property, Lindskog et al. (2003) suggest the following simple procedure for estimating
Σ both for the multivariate normal and student-t copulas. First, given M instances, an empirical
estimate of Kendall’s tau for all pairs of variables Xi, Xj is computed using

ρ̂τ (Xi, Xj) =
n(n− 1)

2
×∑

1≤m1<m2≤M sign
[

(Xi[m1]−Xi[m2])×

(Xj [m1]−Xj [m2])
]

whereXi[m1] denotes the value ofXi in them1’th instances. This yields an unbiased and consistent
estimator of Kendall’s tau. Using the method of moments, Σij is then given by sin(π2 ρ̂τ (Xi, Xj)).
One numerical issue to consider is that theoretically (though this did not happen in our experiments),
this element-wise computation of Σ may result in a correlation matrix that is not positive definite, in
which case appropriate adjustment methods can be used (e.g., , Rousseeuw & Molenberghs (1993)).
See Demarta & McNeil (2005) for more details on this estimation approach.

If we assume a uniform correlation structure so that the diagonal values of Σ are fixed to 1 and
the off diagonal elements all equal to ρ, then direct optimization via a conjugate gradient method
is straightforward and fairly efficient. The explicit form of the derivatives can be found in Zezula
(2009).

3 Multivariate Frank Copula
Frank’s Archimedean copula for N dimensions is defined as

C(u1, . . . , uN ) =

− 1
θ log

(
1 + (e−θu1−1)(e−θu2−1)...(e−θuN−1)

(e−θ−1)N−1

)
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To derive the copula density, we compute the N -order partial derivative of C(u1, . . . , uN ). Using
A to denote the term within the logarithm, we have we have

∂A

∂ui
= −θe−θui

∏
j 6=i(e

−θuj − 1)

(e−θ − 1)N−1

= −θ(A− 1)
e−θui

(e−θui − 1)
= −θ(A− 1)Qi,

where we used Qi to denote the quotient e−θui

(e−θui−1)
. Using this we have

∂C(u1, . . . , uN )

∂u1
= −1

θ

1

A

∂A

∂u1

=
(A− 1)

A
Q1 =

(
1− 1

A

)
Q1.

From which we have

∂2C(u1, . . . , uN )

∂u1∂u2
=

1

A2

∂A

∂u2
Q1 = −θ (A− 1)

A2
Q1Q2.

And

∂3C(u1, . . . , uN )

∂u1∂u2∂u3

= −θQ1Q2
∂A

∂u3
× A2 − (A− 1)2A

A4
=

= −θ2Q1Q2Q3
(A2 − 3A+ 2)

A3
.

Continuing we have

∂4C(u1, . . . , uN )

∂u1∂u2∂u3∂u4

= −θ2Q1Q2Q3
∂A

∂u4
× (2A− 3)A3 − (A2 − 3A+ 2)3A2

A6

= −θ2Q1Q2Q3
∂A

∂u4
× −A

2 + 6A− 6

A4

= −θ3Q1Q2Q3Q4 ×
A3 − 7A2 + 12A− 6

A4
.

And

∂5C(u1, . . . , uN )

∂u1∂u2∂u3∂u4∂u5
= +θ4Q1Q2Q3Q4Q5×

(A− 1)(−A3 + 14A2 − 36A+ 24)

A5
.

While cumbersome, this can be easily continued. However, the above formulas are sufficient for our
work where we only consider networks with up to 4 parents (local copulas with up to 5 variables).

To find the maximum likelihood parameters of the density, we rely on the building block

∂A

∂θ
=

∂A− 1

∂θ
= (A− 1)

∂log(A)

θ

= (A− 1)

[∑
i

−uiQi +
N − 1

e−θ − 1

]
.

Using this, the derivatives of the copula density forms derived above are straightrforward.
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