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Appendix

This appendix is mainly devoted to the proof of Theorem 2.1 in [1]. For clarity, we recall Algorithm
2 and Theorem 2.1 in [1].

The problem considered in [1] is

min  F(z) = f(z) + g(x). (D

Algorithm 2 Alternating linearization method with skipping step

Input: z° = 3°
fork=0,1,--- do
1. Solve 741 1= arg min, Q(z,4) = £() + g(s*) — (W2 — ) + & o — 13
2. If F(xPH1) > Q(a% 1, y¥) then 2FF1 = k.
3. Solve y**! := argmin, Q;(z**1,y);
4. )\k+1 — Vf(l‘k+1) _ (xk:+1 _ yk+1)/ﬂ~
end for

Theorem 2.1. Assume V f is Lipschitz continuous with constant L(f). For 8/L(f) < u < 1/L(f)
where 0 < 8 < 1, Algorithm 2 satisfies

o pran < I2 =21
F(9) ~ Fla) < s W, @

where x* is an optimal solution of (1) and k., is the number of iterations until the k — th for which
F(2*1) < Q2%+, y®). Thus Algorithm 2 produces a sequence which converges to the optimal
solution in function value, and the number of iterations needed is O(1/¢) for an e-optimal solution.

To prove Theorem 2.1, we need the following definitions and a lemma which is a generalization of
Lemma 2.3 in [2]. Let ¥ : R™ — R and ® : R™ — R be convex functions and define

Qul11:0) = 9(1) + (1) + (p(0).u =) + 5-f[u = o],
where 7, (v) is any subgradient in the subdifferential 9 (v) of ¥(v) at the point v, and
py(v) = argmin Qy (u, v). 3)
Lemma A-1. Let ®(-) = ¢(-) + 9(-). Forany v, if
D(py (v)) < Qu(py(v),v), )



then for any u,
20(2(u) — @(py(v))) 2 [lpy (v) = ull® — [Jv - ul|*. (5)

Proof. From (4), we have
O(u) = @(py(v)) = @(u) = Qu(py(v),v)
= ()~ (0(pu(v)) + ¥(©) + (1 (0),Pu() = ) + Sillpu(v) — v]) -
Now since ¢ and ¢ are convex we have

¢(u) 2 ¢(py (v) + {u = py (), 75 (Py (v))), (7

P(u) = 9(v) + (u = v, 7 (v)), (8)
where v4(-) is a subgradient of ¢(-) and v, (py (v)) satisfies the first-order optimality conditions for
3),1.e.,

To(pe(0) + 75(0) + - (pyl0) = v) =0, ©)
Summing (7) and (8) yields
O(u) 2 ¢(py(v)) + (u = py(v), 16 (Py (v)) + ¥ (V) + (v — 0,74 (v)). (10)

Therefore, from (6), (9) and (10) it follows that

D(u) = (py(v)) = (Y(v) + 76 (Py (V) u = Py (v)) — i\\pw(v) -3

- <—%(pw(v) ) u— py(v)) - inpwm o3
i (lpo(®) — ull? — flu—v]?).

O

Proof. [Proof of Theorem 2.1] Let I be the set of all iteration indices until £ — 1-st for which no
skipping occurs and let I, be its complement. Let I = {n;}, i =0,...,k, — 1. It follows that for
allm € I, a1 = y™.

For n € I we can apply Lemma A-1 to obtain the following inequalities. In (5), by letting ¢ = f,
¢=g,u=2z"andu= 2", we get py(v) = y" ", & = F and

2u(F(x*) = F(y"™*h)) > g™+t — a2 — [la"+! — 2% (1D
Similarly, by letting ¢ = g, ¢ = f, u = 2* and v = y™ in (5) we get py(v) = 2" "1, ® = F and
2u(F(x*) = F(2" ) > [la" ™ — ™| — [ly" — 2*|*. (12)
Taking the summation of (11) and (12) we get
2u(2F (¢¥) — F(a"h) = F(y™™) > [ly™ ™ — ™[ = |y — 2|, (13)

Forn € I., (11) holds, and we get
2u(F(x*) = F(y"™*h) > g™+ —2*))? = ly" — =%, (14)
due to the fact that 2”11 = y™ in this case.

Summing (13) and (14) overn = 0,1,...,k — 1 we get

k—1
(2] + [LNF ") = 3 Fa™h) = ST Fy) 1)
nel n=0

k—1
>3 (g™ =) =y =2 )?)
n=0

=lly* — 2| = ly° - 2*||?

> — e - 2|

(6)



For any n, since Lemma A-1 holds for any v, letting u = 2" *! instead of 2* we get from (11) that

2u(F (") = F(y"™h) = [y =" > 0,
or, equivalently,

2u(F(z") = F(y")) = lly" - 2" [ > 0.

Similarly, for n € I by letting u = y” instead of * we get from (12) that
2u(F(y") = F(z"™) = 2"+ —y"|* > 0.

On the other hand, for n € I, (18) also holds because 2! = 4™, and hence holds for all n.

Adding (16) and (18) we obtain

and adding (17) and (18) we obtain
2u(F (a") — F(a™*)) > 0.

(19) and (20) show that the sequences F'(y™) and F'(z™) are non-increasing. Thus we have,

k—1
Z F(y"*1) > kF(y*) and Z F(z"™) > k, F(z).
n=0 nel

Combining (15) and (21) yields
20 ((k + k) F(27) = kn F(2") = kF(y*)) > |2 —2*||*.
From (17) we know that F'(z*) > F(y*). Thus (22) implies that
2u(k + ko) (F(y*) = F(z")) < [l2® — 2",

which gives us the desired result (2).

Also, for any given € > 0, as long as k > %;;w*”z, we have from (2) that F(yk) — F(z*)

i.e., the number of iterations needed is O(1/¢) for an e-optimal solution.
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