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1 Proof of Theorem 1

Lemma 1 If 2x assumes a beta distribution with parameter (1, 3), the expection of ,
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Proof: It is known that the expectation of the beta distribution B(1, ) is E(z) =
ﬁ, therefore the first equation is immediate.

For k > 1, the expectations E(z*) of a beta distribution can be computed as:
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The last step use the formulae B(z +y) = S&IW and T'(z 4+ 1) = 2T'(x), as well

as the expectation of the beta distribution E(z) = ;¢5.
If 2z instead of x assumes the beta distribution, then

E(Y) = ooE((2r))
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Substite o = 1, k = 2, 3,4 we obtain the Lemma. O

Proof of Theorem 1:

Proof: Define n(x;) = Pr(y = 1|z;,Pr(y = —1|x;) > Pr(y = 1|z;)). The most
adversarial scenario is Pr(1 — 2n(x;) < 2¢) = ce?, because this maximizes uniformly
the chance that the class-conditional probability is close to 1/2. This means 27(x;)
assumes a beta distribution B(1, 8). It could be proved that the likelihood ratio satisfies
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From Lemma 1, we know that E(n?) = %W,E(n) = 3541 therefore we

have
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Furthermore, a bound on the variance can be computed as
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in which E(n*) = S IO (PR E(n ).7 P EERNEm IR The last step
involves some quite complicated arithmetics and simplification.

A simpler bound can be expressed as:
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which is an upper bound of the above bound.
By Bennett’s inequality [1],
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therefore with probability 1 — 6,

N2, <nB(Z) + /2nV (Z)log 1/6 + 1°g31/5

Take Z = and plug in the mean and variance bounds computed previously, we
obtain the theorem O

2 Proof of Theorem 2
(a) It is straightforward to show that
R(f)—R" = R(f)—R(n-1/2)
= E([f(X)>1,n(X) <1/2](1 - 2n(X))
EQ1[f(X) <1,n(X) >1/2](2n(X) — 1))
= (R-(f) - RL)+ R (f) — RY

We apply Jensen’s inequality to both summands and obtain
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(b) First note that since ¢(0) = 0 and 1) is continuous, §; — 0 implies ¥ (6;) — 0.
Thus we can replace condition (2) by
(27) For any sequence (6;) in [—1, 1],

¥(0;) — 0 implies 6; — 0

To see that (1) implies (2°), let C be classification-calibrated, and let (6;) be a
sequence that does not converge to 0. Define ¢ = limsup6; > 0, and pass to a
subsequence with lim §; = ¢. Then by continuity lim¢(6;) = 1(c), and ¢(c) > 0 by
classification-calibration. Thus for the original seequence (6;), we see lim sup ¥ (6;) >
0, so we cannot have ¢(6;) — 0.

To see that (2°) implies (3), suppose that Ro(f;) — R¢.. By part (a) of the theorem
Y= (R_(f;) — R) + ¥(R4(fi) — R%) — 0, since both 1)~ and 1 are convex and
positive, (2°) implies R(f;) — R*.
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Finally, to see (3) implies (1), suppose C'is not classification-calibrated. By defini-
tion, we can choose 17 # 1/2 and a sequence 1, aa, . . . such that sign(a; (n—1/2)) =
—1 but ¢,(a;) — H(n). Fix x and choose the probability distribution P so that
Px{z} = 1and P(Y = 1|X = z) = n. Define a sequence of functions f; for
which f;(x) = a;. Then lim R(f;) > R*, and this is true for any infinite subsequence.
But C)(o;) = H(n) implies Ro(f;) — R¢. The contradiction proves the final part
of the theorem. t

3 Equivalent Constant Transforms

Proposition 1 For loss functions that satisfy a scaling equality L(k19, k1y) = k2 L(9, y),
solving (4) with C = Cy and D; for each bag is equivalent with solving (3) with

C = %CO and lez

Proof: A variable substitution of z = kyy and v = kyw in (3) would obtain the
conclusion. O

The support vector regression (SVR) we use satisfies L(k17, k1y; €) = k1 L(9, y; 1)
In this case, the uniform scaling on all the D;s is equivalent to subsequent changes in
both C' and e.

4 Projection to the Bag Constraint

We use the following procedure to project y*: Denote the sum of scores in a bag as
§; = ngr B, yj For each bag B;, we check if s; < D;, if not, we simply set all the

D;—s;
|Bs|

set all the negative y;L to 0. If this makes s; > D;, we subtract equal amount on all the

negative y;“ to 0. If s; < D;, we add to each y;” This makes s; = D;. Then we

positive yj' to make s; = D;. If this created additional negative yj’ the alternating
projection process goes on until both conditions: s; = D; and y+ > 0 are fulfilled.

5 Derivation of the SVM dual problem

First rewrite the optimization in the canonical form:

min sllwll? + C(Zi (& + &)
st. ((w, ¢(z;)) +b) — y; < e+ &, foreach ;" z;
yi — ((w, d(x;)) +b) < e + &, foreach zF,
Yaten,yi = DilBil

yf >0

where y; = 0 for z; and K (z,y) = (¢(z), 6(y)).



Setting a; , a; as the Lagrange multipliers of the first and second set of constraints,
and 7; the Lagrange multipliers of the bag constraints, we obtain the following KKT
condition:
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From the KKT conditions one could see that to make the equality constraint ) _+_ y;r =
T EB;

D;|B;| hold, we need n; > 0, essentially, each «;" in the bag must be positive. This
means that y; — ((w, ¢(x;)) + b) > € for all the items in the bag. Thus, to make the
equality hold, all items in the positive bag need to be predicted smaller than their real
value y;. Another issue is, since 7 > 0 must hold, a:r > «; , since only one of aj
and ¢ is nonzero, this means «;; = 0 for instances in positive bags. Therefore, the
situation that o7 = 0,c; > 0 could never exist. Back to the original optimization
problem, this means ({(w, ¢(x;)) +b) — y; < €+ &; never holds in equality. Therefore,
(w0, () +b) < i + e

The dual problem is very similar with the original SVM, with only minor differ-
ences introduced from 7:

min ot —a ) TK(at —a7)
aT,am,n
n — k
ey (af +ap) = X, Dil Bilng
s.t. 0<af,a; <C
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From the dual problem, we could see that 7; needs to be made larger to im-
prove the result of the dual. Therefore, the algorithm would always prefer to choose
n; > 0. From our previous analysis this essentially means that the equality constraint
teB; yj = D;|B;| is desirable. Thus the algorithm would tend to make more vec-
tors from positive bags as support vectors. And tend to make predictions smaller than
the estimated value y;.
It could be seen that the best solution of 7; is n; = max(ming,ep, (a; — o;),0),
with this in mind, the problem can still be solved using an SMO-type active set ap-
proach of selecting two «; for one iteration.



The SMO subproblem is thus:
min 1 [s;; s [Q” Qij] [S’ai
ooy 2 [sie 550 Qij  Qj5] [s50y
_Dkl |Bk1 |77k1 - Dkz |B/€2 |77/€2
s.t. 0<a,a; <C

s;0; + s;0; doesn’t change

} + €e(a; + )

where s; and s; are the signs of «; and «;, respectively.

The SMO working set selection would be the same as in the original SVM, i.e.,

find the maximal violating pair, except that the gradient now needs to take 7 into con-
sideration.
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