
Appendix

Theorem 6.1. Given a set of n training data instances lying in a ball of radius 1, the sensitivity
of regularized logistic regression classifier is at most 2

nλ . If w1 and w2 are classifiers trained on
adjacent datasets of size n with regularization parameter λ,

‖w1 − w2‖1 ≤
2

nλ
.

Lemma 6.2. Let G(w) and g(w) be two differentiable, convex functions of w. If w1 =
argminw G(w) and w2 = argminw G(w)+g(w), then ‖w1−w2‖ ≤ g1

G2
where g1 = maxw ‖∇g(w)‖

and G2 = minv minw vT∇2G(w)v for any unit vector v ∈ Rd.

Proof of Theorem 4.2. We formulate the problem of estimating the individual classifiers ŵj and the
classifier w∗ trained over the entire training data in terms of minimizing the two differentiable and
convex functions g(w) and G(w).

ŵj = argmin
w

J(w, x|j , y|j) = argmin
w

G(w),

w∗ = argmin
w

J(w, x, y) = argmin
w

L(w, x|j , y|j) +
∑

l∈[K]−j

L(w, x|l, y|l) + λ‖w‖2

= argmin
w

J(w, x|j , y|j) +
∑

l∈[K]−j

L(w, x|l, y|l) = argmin
w

G(w) + g(w).

∇g(w) =
∑

l∈[K]−j

1

nl

nl∑
i=1

−e−yi|lwT xi|l
1 + e−yi|lwT xi|l

yix
T
i ,

‖∇g(w)‖ =

∥∥∥∥∥∑
l

1

nl

∑
i

−e−yi|lwT xi|l
1 + e−yi|lwT xi|l

yix
T
i

∥∥∥∥∥ ≤∑
l

1

nl

∥∥∥∥∥∑
i

−e−yi|lwT xi|l
1 + e−yi|lwT xi|l

yix
T
i

∥∥∥∥∥ ≤∑
l

1

nl
,

g1 = max
w
‖∇g(w)‖ ≤

∑
l

1

nl
. (5)

∇2G(w) =
1

nj

∑
i

eyi|jwT xi|j

1 + eyi|jwT xi|j
xi|jxi|Tj + λ1, G2 ≥ λ. (6)

Substituting the bounds on g1 and G2 in Lemma 6.2,

‖ŵj − w∗‖ ≤ 1

λ

∑
l

1

nl
. (7)

Applying triangle inequality,

‖ŵ− w∗‖ =

∥∥∥∥∥∥ 1

K

∑
j

ŵj − w∗

∥∥∥∥∥∥ =
1

K

∥∥∥∥∥∥
∑
j

ŵj −Kw∗

∥∥∥∥∥∥ =
1

K
‖(ŵ1 − w∗) + . . .+ (ŵK − w∗)‖

≤ 1

K

∑
j

‖ŵj − w∗‖ = 1

Kλ

∑
j

∑
l∈[K]−j

1

nl
=
K − 1

Kλ

∑
j

1

nj
≤ K − 1

n(1)λ
.

where n(1) = minj nj .

Proof of Theorem 4.3. We use the Taylor series expansion of the function J to have

J(ŵs) = J(w∗) + (ŵs − w∗)T∇J(w∗) + 1

2
(ŵs − w∗)T∇2J(w)(ŵs − w∗)

for some w ∈ Rd. By definition,∇J(w∗) = 0.
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Taking `2 norm on both sides and applying Cauchy-Schwarz inequality,

|J(ŵs)− J(w∗)| ≤ 1

2
‖ŵs − w∗‖2 ‖∇2J(w)‖. (8)

The second gradient of the regularized loss function for logistic regression is

∇2J(w) =
1

n

∑
i

eyiw
T xi

1 + eyiwT xi
xixTi + λ1 =

1

n

∑
i

1

1 + e−yiwT xi
xixTi + λ1.

Since the logistic function term is always less than one and all xi lie in a unit ball, ‖∇2J(w)‖ ≤
λ+ 1. Substituting this into Equation 8 and using the fact that J(w∗) ≤ J(w),∀w ∈ Rd,

J(ŵs) ≤ J(w∗) + λ+ 1

2
‖ŵs − w∗‖2. (9)

The classifier ŵs is the perturbed aggregate classifier, i.e., ŵs = ŵ + η, with the noise term η ∼
Lap

(
2

n(1)ελ

)
. We apply Lemma 6.3 to bound ‖η‖ with probability at least 1− δ. Substituting this

into Equation 9, we have

J(ŵs) ≤ J(w∗) + 1

2
‖ŵ− w∗ + η‖2 = J(w∗) +

λ+ 1

2

[
‖ŵ− w∗‖2 + ‖η‖2 + 2(ŵ− w∗)Tη

]
≤ J(w∗) + λ+ 1

2

[
(K − 1)2

n2(1)λ
2

+
4d2

n2(1)ε
2λ2

log2
(
d

δ

)]
+ (λ+ 1)|(ŵ− w∗)Tη|.

Using the Cauchy-Schwarz inequality on the last term,

J(ŵs) ≤ J(w∗) + λ+ 1

2

[
(K − 1)2

n2(1)λ
2

+
4d2

n2(1)ε
2λ2

log2
(
d

δ

)]
+ (λ+ 1)‖ŵ− w∗‖‖η‖

≤ J(w∗) + (K − 1)2(λ+ 1)

2n2(1)λ
2

+
2d2(λ+ 1)

n2(1)ε
2λ2

log2
(
d

δ

)
+

2d(K − 1)(λ+ 1)

n2(1)ελ
2

log

(
d

δ

)
.

Proof of Theorem 4.4. Let wr be the classifier minimizing the true risk J̃(w). By rearranging the
terms,

J̃(ŵs) = J̃(w∗) + [J̃(ŵs)− J̃(wr)] + [J̃(wr)− J̃(w∗)] ≤ J̃(w∗) + [J̃(ŵs)− J̃(wr)].

Sridharan, et al. [14] present a bound between the true excess risk of any classifier as an expres-
sion of bound on the regularized empirical risk for that classifier and the classifier minimizing the
regularized empirical risk. With probability at least 1− δ,

J̃(ŵs)− J̃(wr) ≤ 2[J(ŵs)− J(w∗)] + 16

λn

[
32 + log

(
1

δ

)]
. (10)

Substituting the bound from Theorem 4.3,

J̃(ŵs)− J̃(wr) ≤ 2(K − 1)2(λ+ 1)

2n2(1)λ
2

+
4d2(λ+ 1)

n2(1)ε
2λ2

log2
(
d

δ

)
(11)

+
4d(K − 1)(λ+ 1)

n2(1)ελ
2

log

(
d

δ

)
+

16

λn

[
32 + log

(
1

δ

)]
. (12)

Substituting this bound into Equation 10 gives us a bound on the true excess risk of the classifier ŵs
over the classifier w∗.

Lemma 6.3. Given a d-dimensional random variable η ∼ Lap(β) i.e., P (η) = 1
2β e
− ‖η‖1β , with

probability at least 1− δ, the `2 norm of the random variable is bounded as

‖η‖ ≤ 2dβ log

(
d

δ

)
.

The proof is similar to Lemma 5 of [8].
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